31. 평면벡터 문제 하나 풀고가세요
e.pdf
올해 출판 될 D&T Core 문제집에 수록된 문제입니다.
답은 첨부파일로 확인해주세요.
풀이에 대한 질문이 있으시면 댓글로 주세요.
오르비 검색창 #제헌 으로 검색하시면
또다른 문제도 풀어 보실 수 있습니다.
허락없이 이 문제들을 짜깁기 해서 과외용/수업용으로 쓰지 말아주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오 1
-
ㅈㄱㄴ
-
얼버기 5
오늘두 즐거운 하루
-
기상 완료 오늘도 ㅍㅇㅌ
-
그 중 동부는 눈 쌓이면 이렇게 빨리 못 돌아다니겠죠 영화 보면 한 사흘은 집에...
-
모닝 질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
얼버기 9
겨울이니까 이정도면 얼리다
-
너무 일찍 왔다 5
역에서 20분째 기다리는중 앞으로 20분더 기다려야함
-
기도가 먹혔나 6
오늘 오전이랑 내일 오후에만 눈온다네 제발 오후 늦게 눈와라 제발
-
고려대, 지스트, 경희대, 동국대, 부산대, 서울대, 성균관대, 아주대 연세대,...
-
뭐지
-
밥을 0
지금 김밥을 먹을까 도착해서 부산에서 아침을 먹을까 10쯤도착예정인데
-
살말 0
-
일어날 수 있을지 고민하기보다 걍 7시 기차 지르니까 4시에 자동으로 눈이...
-
기상 1
-
슈바 집 정전됨 2
눈 많이 와서 그런가 밖에서 번쩍하면서 우웅하더니 정전됨 냉장고 shut down...
-
리 3
리
-
버 0
버
-
풀 0
풀
-
결과가 끝까지 만족스럽지 않지만 떠나야 할 때가 왔구나 하고 싶은 것도 없는데
-
2026 수능! 겁내지 말고 주어진 시간에 끝까지 최선을 다하는 시간이 되길!!
-
올해 수능을 쳤고요 수능을 정말 심하게 망쳤습니다.. 6,9모때는 중경은 대부분...
-
탐구과목은 물1물2 선택했습니다
-
전 2
-
기 0
-
쥐 3
-
모자 쓰고 다녀야징
-
아 눈오네 2
-
뭐냐 나 잔다 6
내일은 또 뭐하지
-
어떻게 위로해주는게 좋을까
-
고데기 할말? 3
스타일링은 못 하고 안하면 90퍼 확률로 머리가 철수처럼 돼서 그거 방지용으로...
-
오드구오의 데뷔 정규앨범 사클래퍼 특유의 날것 그대로의 느낌과 야마가 듣기 좋게...
-
다들 안 자고 머함 10
난 일어난거임!
-
꿈조차 없던 놈의 노랠 이젠 다들따라불러 엄마 랄랄라랄라 2
1년 전 무너졌던 어린애가 아냐 이젠 달라 엄마 난나나난난
-
후후
-
이미지 써드림 25
머리만 말리고
-
잘자 굿나잇 0
-
마감
-
절대로 오르비언들을 놀라게해선 안돼!
-
님들님들 급함 6
프사 추천좀
-
피오르 같은데 말고 메가스터디에서 40만원대에 정시 상담 해주는 거 있는걸로 아눈데...
-
이미지적어드림 30
몇명만
-
좀보이드 해볼까 근데 친구들이 이 게임을 같이 할까
-
지금 반도체가 취업 제일 힘듬. 그냥 똑같이 3d업무 야가다인거 기계가서 설비하는게 취업도 편할듯
-
기분탓인가
-
해파리~ 지역을 지~키자~!
-
작년에 비해 국어수학 표점이 낮으니까 작년과 환산방식이 동일하다는 가정하에 표점...
-
갑자기 유튜브가 너무 재밌다
-
재밌었고 감사했습니다 ㅎㅎ 인증같은거 하지말걸 그랬네요
제헌좋아
재미있는 문제 감사합니다
그 솔로깡님임??
ㅇㅇ 그렇슴 ㅎㅇㅎㅇ요
ㅎㅎ
벡터실력 상승된 것 같습니다 감사합니다.
항상 도와주셔서 감사합니다..
진짜 한 4개월간 수학 자체를 손에서 놓고 쉬다가 펜 잡고 푼 첫 문제인데 너무 감동
작년 2탄임..
맙소사.....
언제 출판되나요!!? 두근 기대 두근
ㅎㅎ곧공지 하겠습니다
넵 기다릴께요!! 두근두근!!
내친김에 #제헌 들어가서 다른문제 다 보고 다시 부대 복귀해야겠다
ㄷㄷ
충성충성충성!
어렵네요 ㅠㅠ... 만년3등급 고3 이과생은 짓밟히고갑니다.. 어떻게해야 1등급을 맞을수있을까요 ㅠ..
개념을 잘 떠올리면서 천천히 풀어보세요 쉬운 문제에요 ㅎㅎ
감사합니다~
ㄷ만 약간의 계산이 필요하고 나머지는 의미만 알면 답 나오게... !!
------------------------
깔끔한 문제 감사합니당. ' -' /
개념에 충실하다면 계산량을 거의 제로로 만들어버릴수있는 문항이군요
깔끔한 문제네요 bb
어려운문제 많나여 제헌님
저 문제는 쉬움~중간 정도 난이도에 속합니다.
재수생인데 제가 실력이 오른건지 문제가 쉬운건지 헷갈립니다...난이도가 어떻게돼나요?
난이도는 예상 배치번호 통해서 생각해보세여
사랑합니다
깔끔하군요!
흥미롭네요
감사합니다..!
랍비선생님
문제 좋네요ㅎ
ㄷ 은 접선긋고 피타고라스로...
문과생인데 ㄱ,ㄴ 은 눈으로도 풀리네요
훌륭합니다.
제가 이 문제 관련해서 글 올렸는데 봐주시면 감사드리겠습니다. '제헌'이라고 검색하시면 될 꺼에요
ㄷ.. 노가다 밖에 못떠올렸는데 저럼 더 쉽네여..
한가지 질문이요 점 a 위치가 3,3에 있거나 0,4에 있으면 선분oa는 지름이 아니게 되는데 이럴 경우는 어떻게 해야하고, 위 문제 상황에서 oa가 지름이라는건 어떻게 파악할 수 있나요??
ㄱ에서
수직조건을 통해 세 점 O A B 가 선분 OA를 지름으로 하는 원임을 밝혔죠
ㄷ을 해결하는데에 매우 큰 힌트를 준 셈이고,
만약 A가 각 OBA가 수직이 아닌 경우에 있으면 별 의미없는 문제가 되겠죠 ㅋㅋ
그래서 애초에 문제만들때 각 OBA가 수직이 되도록 설계한것이구요
dnt 코어도 미적 기벡 확통 따로나오나요...?