[정병훈T] 6평으로에피단다님의 21번 자작문제 해설
2017년 4월 30일 6평으로에피단다 21번 자작문항 해설.pdf
안녕하세요. 오랜만입니다.정병훈선생입니다.현재 강남대성학원에서 수학을 강의하고 있고,올해에는 슈퍼파워N제시리즈 저자가 되었습니다. 여기 오르비 게시판에서 좋은 문제를 발견하였는데,제가 생각한 풀이방법을 언급하는 분들은 거의 없던 것 같아서,해설지를 한 번 만들어 봤습니다.6평으로에피단다님의 21번 자작문제 원본참고로 원본에서 f(x)의 정의구간을 x0인 범위로 제공하고, 이 범위에서 미분가능한 함수라고 제공하지 않으면, 조건 (나)에서 x0인 범위에서의 교점의 개수를 보장할 수 없어서, 이 부분만 문제를 약간 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐하려하면 손님 들어옴요
-
요즘 독감 유행이라 독감 걸렸는데 어제 억지로라도 수학 현강 가려고 독재에서...
-
지인나눔 해주실분 구합니다.
-
기묘함 약간 양자적인 상태랄까?
-
수1할때 노잼이라 좀 고통스러움
-
생윤 사문 생윤 지1 사문 지1 생1 지1 평가원 기준 국수영 433...
-
그낭 일년 쭉 따라가나요? 아니면 방학동안 단기과외같은것도 있어요?
-
시급 2만원?? 더받나요?
-
뭐가 되게 많네요 어디는 뭐 기하를 받는건지 마는건지 기하사탐 기준으로 시대가...
-
첫사랑썰 7
고1이었나 고2이었나 그때 나랑 4살 차이나는 임자 있으신 분을 좋아했음 . . ....
-
접수 1,2일 전후가 ㅈㄴ중요하게 작용하지 않음? 씨발 왜 이런거임
-
이놈의 점공 때문에 신경쓰여서 미치겠어요… 집중이 안 될 것 같은 느낌
-
700일 안 됨 근데 혼자로 돌아가려니 어떻게 지냈는지 기억이 전혀 안나 연애하니까...
-
27수능 보는데 4
화2 지2 갠찮을까요
-
398.5 가능할까요? Bb일 것 같은데 경영 쓸까 하다가 경제가 추합이 조금이라도...
-
얼버ㅣ기 1일차 2
-
사실 고민보단 그냥 욕을하고 싶은거야 근데 난 만났던/만나는 사람 욕 이젠 못하겠음...
-
저는 하루지나면 까먹고 뭐 이러던데 미드같은거 보면서 자연스럽게 익혀야하나 일본어도...
-
내가 병신임.. 새해부터 정신개조 씨게 당하는 기분
-
복습시간이 순공부시간의 약 절반정도 차지하는 거 같은데 제가 볼 땐 너무 많은...
-
야간편돌이 졸려죽겠다 12
하…
-
선넘질 가능으로 통매음으로 고소할 수 없게 vpn이나 토르 이용하게 해서 이런게...
-
사탐 만점 vs 과탐 1컷이어도 무조건 사탐>>>>과탐인가
-
ㅈㄱㄴ
-
저도 해주세요 0
https://asked.kr/geometryhahak
-
자야지 2
-
ㄷㄷㄷ
-
이걸 맞춰? 8
어떻게 알았지
-
생1 ㄷ 생2 13
생1은 유베고 (6모 47 9모 50 수능 37ㅋㅋ) 생2는 쌩노벤데 수능에서...
-
넘어져도 다시 일어나면 되는 것이죠...
-
https://asked.kr/orbi_smarty
-
미적 생지 선택인데 할 것도 없어서 기벡, 물리를 예습해갈려구 해요. 혹시 공대생...
-
옛날에는 평범한 인서울 전화기나 지거국 나와도 취직이 잘 됐었는데... 10
요즘은 신입 공채가 예전보다 줄어서 신입으로 대기업을 가는 건 어렵다고 하네요......
-
현실에 싸진 않음요 다행이다.. 식은땀 났네
-
비단 제 목표, 욕심, 열등감 때문이 아니에요 가장 큰 다른 이유가 있지만 좀 말하기 부끄러움…
-
최고의 아침 0
전날 먹다남은 보쌈+짬뽕국물 아침에 이거보다 맛있는 식사를 한 기억이 손에꼽음
-
윗 학생이 다른 학교로 빠질 점수가 되는지 안되는지 모른다는 겁니다 가장 좋은 건...
-
기차지나간당 10
부지런행
-
술도 안마시고 11
게임도 안하고 스포츠도 안하면 친구 사귀기 힘든듯요 진짜
-
한국 공학대 0
진학사 표본상 2등이였는데, 1등은 3지망이였어요…수석 가능할까요…ㅇㅅㅇ 장학금...
-
내가 먼저 좋아했지만 말을 못하고 있다가 학기가 끝나가는 종강 날에 갑자기 술먹자고...
-
Entj였다가 istp됐긴 한데 내가 봐도 찐 i는 아님 근데 내가 좋아하면 무조건...
-
여러분은 어떤 색이 나올 거 같다고 생각하시나요? 저는 왠지 내년엔 연보라색이나...
-
다들 잘자고 대학 합격하는 꿈꿔요
-
가입은 한참후지만
-
오르비 1
오르비 첫날인데 ㄹㅇ시간녹네요 더 이상은 모 야다~
-
우웅
와 미친.. 지렸다
선생님 질문이 있습니다
보통 변곡접선으로 풀리는 문제에 대해서는
전부다 기하적과 수식적으로 둘 다 관찰이 가능한가요?
아니면 한쪽으로만 나오게끔 하는 경우도 존재하려나요?
보통은 양쪽다 열어놓는 것이 기출의 선례인데 이 부분에 대해서 의견이 궁금합니다
수식으로는 모두 가능합니다. 기하적으로 보통 변곡점 접선을 언급하는 방법은 두 함수 중에 어느 하나의 함수가 1차함수 정도로만 예쁘게 출제해야 가능합니다.
다만, 효율성의 측면에서는 문제에 따라 판단이 다르므로, 어느 풀이가 더 좋다고 쉽게 단정할 수는 없습니다.
이번 같은 경우에는 도함수 자체가 쉽게 도출이 되었는데
예를들어 f=mx+n과 한점에서 만나도록 하는 m의 값을 구하라고 했을때 이 경우에는
도함수자체의 살근에 따라서 달라지니까 만나는 것을 기준으로 분할하여 사고하면 될까요?
{f(x)-n}/x=m으로 놓고, g(x)={f(x)-n}/x으로 고쳐서 푸는 게 쉬울 겁니다.
오히려 이 문제의 경우 해설 기준으로 모든 k에 대한 문제라서 k가 우변에 단독으로 있는 것이 모양이 좋으니 저런 식으로 해결하지 않은 것입니다.
아 제 질문은
선생님이 위에 잡으신 함수꼴로하고 미분을하게 되어 나오는 식을 통해서 원함수를 추론하고 그에따라 그래프를 그린이후에 교점의 갯수를 찾는것인데
이 경우에 도함수가 n에 의해서 확정이 안되기에 찢어서 일반적으로 사고해야하나요?
이 경우는 그렇게 하지 않아도 쉽게 도함수값을 도출가능하기에 저런식으로 원시함수 자체를 적분한것으로 이해하면 되련지요!
또 일반적으로 m,n이 실수 전체의 가뵤을 가지는 것이 일반적인데 어느때는 나눠서 잡고 어느때는 위에 해설한 방향으로 잡아야하는지 궁금합니다!!
아 저는 n값이 고정되어 있을 때를 m의 값의 범위를 구하는 문제를 질문한 건 줄 알았습니다.^^
둘다 변할경우에는 어떤식으로 식을 정리하는것이 좋을까요
둘다 변하는 문제는 나중에 언급되는 알파벳을 우변에 단독으로 두는 것이 좋습니다.
아 x로 나누게 되면 분할해서 따져야하는 것들이 더 많게되어서 그렇게 식을 조작한다고 생각하면 될까요?
정말 감사합니다 ㅠㅠ
x로 나누느냐 아니냐는 중요하지 않습니다. 먼저 언급된 문자가 먼저 결정되는 법이니까요. 예를 들어 m이 먼저 결정된 후에 n을 언급하는 경우에는 우변에 n이 있어야 m에 따르는 풀이를 할 수 있습니다.
여기 해설도 m이 k보다 먼저 결정되니, 우변에 k가 있는 것이 쉬운 것입니다.
아 조건 나에서 주어진 것이 m에 대한 식이 주어졌으니 k꼴만 남기고 다 옆으로 밀어버리는게 맞는것이라고 이해했는데 맞게이해한건가요?
맞습니다.^^
나 조건은 다시보니 16학년도 6평 21번과도 일맥상통하네요.. 저도 정말 많이 배워갑니다 감사합니다
바로 그 점 때문에 이 문제가 좋은 문제라고 생각했던 것입니다. 좋은 문제를 보여주셔서 감사합니다.^^
어 저도 처음엔 그래프로풀고 두번째는 수식으로했는데ㅎ 배워갑니다
읽어주셔서 감사합니다.^^
저는 (가)조건해석을 적분식을 F(x2)-F(x1)으로 바꿔준 뒤 x2-x1으로 나누어준 후 극한을통해 f(x)>=0이라고 해석해주면 (가)조건을 모든상황에서 만족시키는 결과라 생각해서 그렇게 풀었는데 옳은걸까요??! 뭔가 논리적비약이 있는것같아서..
올바른 풀이입니다. 비약은 없습니다.^^
보통 그렇게 미분계수의 정의로 풀면 역 증명을 평균값의 정리로 해줘야 필요충분조건이 되는데, 이 문제에서는 역 증명이 평균값 정리를 써야 할 정도로 어려운 게 아니라서 괜찮습니다.
사실은 가조건의 제 의도는 미분계수를 이용하는 그 풀이입니다
물론 증가함수임를 이용하거나 적분의 넓이에 의한 직관도 현실적인 좋은 대안이겠지요
사실 난이도를 소폭 하향하고자 우변을 x2-x1이라고 안둔거랍니다
난이도 하향의 마음은 제가 잘 이해하고 있습니다. 강대에서 현재 제가 들어가는 반 학생들은 알 겁니다. 최근에 이런 유형의 (제가 만든) 문제를 이미 강의했는데, 저 역시 인테그럴의 옆에 x2-x1은 없었거든요. 그리고 적분으로 내놓으면, 넓이에 의한 직관으로 생각하는 학생들이 있다는 것도 알고 있어서, 일부러 그쪽을 가능하게 만들기도 하는 것이지요.^^