6평 수 가 18,27,28번 살짝 다른 관점
6평 치고나서 학교친구들의 보편적인 풀이법과 다른 거 같은 것들 소개하려 합니다.
사실 여러분들이 보기에 "엥 당연히 생각나는 거 아냐?" 하실 수도 있습니다.
먼저 18번
부채꼴 모양이 직선위로 움직인다고 생각하면 쉽겠죠...?
27번
이건 아마 많은 분들이 생각하셨을듯 합니다.
28번
제일 야매같은 풀이입니다. 0극한 상황을 직관적(?)으로 생각해서 삼각함수가 아니라 간단한 다항함수로 쉽게 나타나는 것인데요. 생각보다 많은 평가원 문제가 (70~90프로?) 이런 방식으로 해결 가능합니다만, 가끔 그냥 삼각함수로 나타내는 게 쉬운 모양이 생기기에 정석풀이법을 익혀야 합니다.
부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 인사하면 받아줌? 24
-
씻고 옴
-
무려19시즌이엇다구 나보다오래햇다고??? 현생살아... 나도가끔오잔아
-
탐구 안보고 국수영 반드시 세과목 모두 222 이내로 들어와야해요 수학 선택...
-
집 도착 9
-
이미지 써드림 go 76
귀찮아지면드랍함
-
암기에는 도가 튼 표본과 강사진을 국경같은 지엽으로 변별하는 것은 이익이 크지 않음...
-
서울대식 400 0
어디정도 됨? +내 점수가 어디서는어메가는 399.5이고 텔그에서는 404.5인데...
-
아침에 글을 한번 썼지만 저는 지난 달에 로컬 회계법인으로 이직했고 올해 대거...
-
질답받아요 5
신체 주소 신상은 알아서 PASS하겠음
-
[사설]그냥 대학 장학금만 늘릴 게 아니라 졸업장 제값 하게 해야 0
교육부가 2025학년도부터 국가장학금 지급 대상을 중산층 자녀에게까지 대폭...
-
근데 정작 교육서비스 받는 게 ㅈㄴ 힘들다는 거 가격이 씹사기라 걔들 입장에서는...
-
지금 텔그 1
서버터진거맞나요
-
fancy
-
질받해요 14
-
누군가가 선넘질은 해달라고 했는데 여르비에게 님 ㅂㅈ 넓어요? 라는 질문을 한 거죠...
-
다 했다 10
내가 해냈다구!
-
이렇다는건 채점기준에 부합하는말만 다 들어가면 좀 논리적비약이 있거나 서술이 좀...
-
간만의 새르비네
-
유튜브에 ‘수능 필적확인문구 노래‘ 검색하면 나옴
-
아 뭐가 문제지 진짜 개화나네
-
인증특) 2
아무도안돌려서 돌리면 돌아오는건 댓글2개와무관심뿐이라 수치사함
-
ㅇㅈ 2
찜질방 팡
-
ㅇㅈ) 눈 ㅇㅈ 15
-
와 ㄹㅈㄷ 사실 2
내일 (사실 오늘) 토요일임 ㅋㅋㅋㅋ캬캬컄 게다가 일정도 약속도 없음 드디어...
-
틀딱 아님 ㅇㅇ
-
벅벅 긁었다 벅벅 풀었다 이만큼 시원한 의성어가 없음 뭐라하지 그 묵직하고 두껍고...
-
질문 안하면 오늘 밤 꿈에 양손에 민초 든 민초한입 나옴
-
아무나한번시작해볼래요? 재밌잖아요
-
얼마나 행복하고 인생이 아름다울까..
-
인증메타돌려줘 3
으응나도보고싶어오랜만에
-
쫄지 말고 파이팅 하세요! 면접관 교수님분들 다 친절하시답니다 ㅎㅎ - 지금 퇴근하는 대학원생이
-
삼수 2
삼수 결정하신 분 있나요?ㅠㅠ
-
교과개념도 해야함?
-
틀.딱은 빨리 도망가야겟슴
-
신유형 zero에 평이한 수준으로 47이면 그정도로 고이진 안ㅍ은듯 ㅇㅇ.....
-
질받 해볼래요 32
ㄱㄱㄱ
-
인증메타만 매일 굴리다가 2월돼서 탈릅한사람 있었는데 올해도 오려나
-
작수 9모 둘다 문학에서 35분 썼고 독서는 틀린 적 없습니다 문학에서 5 6개씩...
-
프사 복귀 완 16
프사 너무 밝아보임 이정도가 적당한듯
-
오늘기분이좋아요 8
왜냐면 수능을망쳐도 괜찮은게아닐까라는 생각을전개했었거든요 이대로도괜찮지않을까요?...
-
지듣노 2
시간차가 좀 나지만 암튼 지듣노
-
치 지구의 운동에 대하여 지동설 관련 만화. 재밌음 헬크 재밌는 판타지 만화 기생수...
-
물리 48드립은 0
어디서나온거임
-
인증메타돌려줘 0
제발
-
재수하는데 의대노리고할거같은데 어디가 좋을까요?
-
저는 칸타타님을 2
존경합니다 하.지.만. 이번만큼은 양보 못해드려요
-
홈화면 ㅇㅈ 4
미니멀리즘을 너무 좋아해서 커스텀으로 꾸먀봤어요
-
이거 진짜에요?
28번 같은 방법으로 작년 수능 18번 풀면 놀라운 결과가 나오죠...
5초컷...
저 궁금한게 있는데요 , m>n 확률 이랑 m<n 확률이 왜 같은건가요?
m이 먼저뽑는건데 확률 서로 달라지지 않나요??
총 경우의 수로 생각하면 m과n의 나올 수 있는 경우의 수가 대칭적으로 분포함을 알 수 있고,
뽑은 경우를 제3자가 결과만 봤을 땐 각 수들을 랜덤으로 배열하는 것과 같기 때문에 둘 확률은 같다고 추론할 수 있습니다.
아 그리구 28번 풀이도 이해가 안가요
s1 s2 넓이 어떻게 구하신거에요??
세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다! 사용하는 역량에 따라 아주 일부분의 문제만 적용시킬수 있거나 거의 모든 문제를 적용시켜 쉽게 풀 수 있고, 극한의 상황을 해석하는 능력을 기르면 정석풀이에서 막혀도 부분적으로 활용할 수 있기에 전 고2내내 이리 풀다가 고3 들어와서 정석풀이법을 익히고 있습니다. 사실 게을러서 편법만 쓴 거지만...
님이 말씀하신 " 세타가 0으로 가는 극한의 상황에서 각각의 도형들을 부채꼴,직각삼각형,사다리꼴로 근사시켜서 부채꼴의 호의 길이공식을 이용해 각각의 변을 간단히 나타내고 넓이를 구하는 겁니다" 이것은 이해가 가는데요
s1 s2 넓이를 구하기 위해서 쓰신 식이 이해가안갑니다 .. 그러니까 s1 s2 넓이를 어떻게 구하나요? 부채꼴도 아니고 아무것도 아닌 도형인데 어떻게 넓이룰 구하신건지 모르겠습니다
S1은 사다리꼴 S2는 직사각형으로 근사시킬 수 있습니다 전자의 경우 위 이미지를 보시면 아실 수 있을테고 후자는 QB와 RB의 곱으로 넓이을 나타낼수 있는데 QB를 나타낼 순 있으나 구조상 복잡하니 극한시 0으로 간다는 점을 이용하면 이 두 변과의 곱은 세타가 영으로 갈때 0으로 수렴하는 세타 이차식이 나옴을 알 수 있습니다. 여기에 세타를 나누어도 0으로 가기에 s1의 값만 구하면 되는 겁니다.
친절한 답변 감사합니당~~