간단한 고등 수학 문제인데 이해가 안되요
게시글 주소: https://orbi.kr/0002485939
자세하고 알기쉽게 해설해주실 수 있으시나요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
티비 시트콤 보는 거 같았음 캐릭터간 유기성이나 이런거 ㄴ무 잘짜여있고 ㅋㅋㅋ
-
지브리는 신이다 1
한남콘도 훈남으로
-
집착하는 여자만 걸러라
-
인생좆됐다진짜ㅋㅋㅋ
-
낭만을 찾아 떠나고 싶어 5등급이 입시를 해봤자 무슨 의미가 있겠어
-
중세국어를 좋아하신다면 육진 방언 글이 재밌게 읽힐 겁니다
-
이전 글 *컴퓨터로 보는 걸 권장합니다. (만약 글자가 깨진다면 아이폰이 옛한글을...
-
솔직히 이제 중복조합 경로(수형도)는 필수급 아닌가 0
제한사항 늘어날수록 실수 줄이려면 필수인거 같은데
-
엔제 추천 ㅂㅌ 2
지금 나온 / 곧 나올 엔제 ㅊㅊ 부탁해요 2컷정도 나옴요…
-
갓반고에서 정시로 틀어야 되는 등급대는 몇점대 정도라고 생각하시나요?… ~점까진...
-
확통할까 1
하...
-
확통 질문이요 3
어디가 틀린건가요??
-
안녕하세욥 10
눈팅만 하다 이번에 가입했네요 ㅎ
-
경쟁률 1:16이고 1명뽑는데 최종등록인원 0명이야 근데 추가 예비순위 1~5차...
-
뭔가 비정상같은데
-
무채색에 디자인 깔끔했으면 좋겠는데..
-
정보글) 본인이 갤럭시 혹은 안드로이드 유저이면서 수험생인데 인터넷 조절을 못한다면 볼 것 4
안녕하세요, 이제부터 글쓰기 편하게 반말하도록 하겠다. 원래 인터넷에 글 싸는 것...
-
경기도 일반고 총 3.68이고 국영수사과로는 3.8등급인데 모의고사는 1~2등급...
-
독서 day1 8번문제 답 2개인것 같은데 푸신분계신가요?
-
설수의를 향하여
-
프사가 강해린이라 그런가... 굳이 정정 안하니까 잘못 아는 사람들 많네;
-
이름만 파서빌리티나 스테틱스 였으면 진심 90퍼가 확통함
-
공통을 많이 틀릴수록 좋음 아니면 확통을 많이 틀릴수록 좋음??
-
ebs는 할꺼라 빼고…. 주간지만 풀면 너무 적지않나
-
ilium iliac 둘다 장골(엉덩뼈)라는 뜻인것같은데 차이가 있나요? 뭔가...
-
할게 너무 많아 1
자료에 치어 뒤지겟네
-
누구보다도 상세하게 풀어볼게요. 오르비 독스에도 올리고 싶은데 어케함
-
화학 ㅈ댄거같다 4
최근 생각이다.
-
10월 말 11월 초에 짱 쉬운 수학 하나랑 기출문제집 하나 20일간 벼락치기만...
-
쉽고 깔끔하고 재밌는문제 <<< 시간 때우기 goat
-
수학하고싶다 0
노래들으면서 수학문제 풀기가 유일한 낙인데
-
등급만 떡하니 박제해놓고 학력저하니 원서 성공이니 컨설팅 홍보용이니 핵빵이니 하는게...
-
너무행복해요 6
제가 하고싶은 걸 드디어 할 수 있게 됐어요
-
이건뭐지ㅋㅋ 12
대체뭐하는분일까 문과면서생2는어째서
-
너무 어려운건 말고…
-
이신혁t 모고 0
이신혁t 라이브 중인데 on 모의고사 1회하고 3회 없이 2회만 온거임?
-
CC 커플들 데이트 장소로 딱이네요~^^
-
생윤러들 0
선택 한 번씩만 하고 가주셔요
-
사문 생윤으로 사탐런 했는데. 생윤 너무 어려운거 같음요.. 근데 버리기는 좀...
-
진짜 되긴함
-
앙버터 이후로 이름값하는 애는 처음 봤어요
-
아 다욧 안할래 0
뱃살 좀 나온다고 그거 볼 일 있겠나 어차피 1키로도 안 찔 건데 별일 업ㄹ겠지
-
현재 재수생이고 이번 3모 공통 2틀 (14,22) 선택 5틀...
-
ㅇㅈ 0
ㅢㅏ
-
어케할까요
-
오늘 공부한거 2
제로
-
제가 시대인재에서 변춘수 선생님의 강의를 처음부터 수강하고있었는데 이번 내신휴강때...
-
일이나 아니면 개인적인 취미라던가 해서 어떻게든 바쁘면 자연스럽게 연애고 외롭다고...
-
침대 가고싶ㄷ 1
일류 대학은 침대 그 다음은 와플대
1아니에요?
원의 중심에서 접점으로 직선 그으시고 , 나뉜 삼각형 두개 넓이를 코사인세타,싸인세타 이용해서 나타내면 되겟네요
접점을 (cos세타,sin세타)로 두면 0
OA=1/cos세타 OB=1/sin세타 이니
삼각형 OAB=1/(sin 2세타) (← 2배각 공식)
0<2세타
따라서 삼각형 OAB의 넓이≥1
원위의 한점 코사인세타 ,사인세타로잡고
직선식 세우면 Cx+Sy=1 이니까
x,y절편 삼각함수식으로바꾸고 곱해서
최소값구하심됨
삼각형 넓이가 최소가 될려면 접선이랑 반지름이랑 수직이니깐 반지름이 높이인 상황에서 삼각형의 밑변의 길이가 최소가 되야하으로 직선 oa ob의 길이가 같으면 되겟네요.
삼각형의 밑변의 길이가 최소이려면 직선 oa ob의 길이가 같아야한다 ?
당연한거임?
피타고라스 써서 최소값구하시면 ..oa ob가 같을때 최소요.
AB^2=OA^2+OB^2≥2root(OA^2×OB^2)=2OA×OB에서 등호성립조건이 OA=OB
아 이코.. 등호성립조건..
머리가 돌이됫군요 . 감사합니닼ㅋ
아 저..그래도 이번수리 나름 96점인데......
멘붕이일어날려고하네요
15일후 논술시험 응시자 맞나싶네요 ..ㅜㅜ
아!! 내가 이해했다
감사합니다. 이해가 쉽게 되네요
ㅇㅋ 이게제일좋음 ㅇㅇ
아 이게 더 간단하군요!
감사합니다 졸라 이해됨 ㅋㅋㅋ
다 끝난마당에 늦게봐서 아쉽지만
글쓴이의 수학공부를 위해서
수학과학생의 의견을 좀써보면
OA^2 + OB^2 >= 2root(OA^2xOB^2)에서
등호성립 조건이 OA=OB라고해서
반드시 그때 제곱의 합이 최소라고 할수는 없죠..
단지 등호가 성립하는것일 뿐입니다.
분명히 OA와 OB가 모두 변수이고, 그 제곱의 합인 OA^2+OB^2 도 변수이고
그 곱인 OA x OB 또한 변수인 상황에서,
단순히 등호성립순간에 최소가 된다고 단정지어버리면 안됩니다.
이는 엄연히 직관의 영역으로 들어가므로, 비논리적이고
[수리논술시험]이라면 [산술기하로 최소인순간을 체크]하면 감점이 될거라 생각되구요.
결론적으로 OA= OB일때 최소가 맞긴하니 "수능이라면" "운좋게" 정답은 맞아들어갑니다만,
수리논술 혹은 대학수학 시험이었다면 명백히 감점요소가 될듯합니다~
오~~~ 제가 그생각 들어서 이거 머리싸쥐고 2시간 생각 ;(그저께) 잠도 못자고
왜 등호 성립 조건이 저거면 저렇게 돼지? 이러면서 지식인에도 질문하고 했는데
정확하게 말씀해주시는 분이 있네요 궁금증 해결됐음 감사요 ㅎㅎ
48일동안 잊고있던 수학생각나네;;
이거 분명 고1 원의방정식에서 나오는 응용문제인데,,, 다들 수2(아닐수도)이용해서 풀어주시네 ㅋㅋ;;;
질문자님이 뭐 이과 예비고3이시라면 문제가안되지만 고1이시라면 ㅋㅋㅋ 댓글들이 다 이해가 안갈듯
삼각함수 이용안하고 접선의방정식이랑 y절편,x절편 이용해서 식세운담에 산술기하 쓰시면 고1수준에서 풀수있어요
접점 딱 중간인부분에서 양옆으로 조금씩움직이면 짧아지는쪽은 많이짧아져봐야 1이고 길어지는쪽은 무한대까지 길어질수있으니까..
그냥 중간인부분에서 최솟값.
거기서 걍 1:1:루트2 사용해서 길이구하면.. ㄷㄷ;;;
아마 중3이라면 이렇게 풀듯하네요
한 좌표가 커지면 ㅇㅇ.. 넓이 커져성
그것도 x ,y 대칭이니까
y=x 만나는점 ?ㅇ...
너무 직관적인가 ㅋ
ㅇ직 있으실려나~ 접하는 거이기 때문에반지름이 항상 높이가 되므로
밑변 즉 여기서는 대각선이 가장 짧은 걸 생각하시면 되겠습니다~
보자마자 직각 이등변일때가 나옴 너무 직관인가
y=s/c 랑 수직이니까 기울기가 -c/s 인직선 이구 그 직선이 (c,s)를 지나요 식정리하면
y=-c/sx+1/s 되구
와이절편 엑스절편하면 1/2sc 인데 2sc가 최대일때최소가되니까 (s+c)제곱>=2루트sc 해서풀면뎀 100퍼 고등수학개념
직선 방정식세우고 원이랑 접하는조건에서 코시슈바르츠 써도되지안을까요?
ab가 y축과 x축하고 평행하다면 도형의 넓이가 무한.
고로 가운데가 최소
그러니까 선을 돌려본다고 생각하면 되는건가.
그냥 삼각치환하면 끝
반전점으로 생각하셔도되요 ㅋ
접점을 (a, b)라 하면 저 접선 방정식이 ax+by=1이니까 x절편 1/a(a>0), y절편 1/b(b>0)이고 a²+b²=1≥2ab, 삼각형OAB=1/(2ab)≥1이므로 최솟값 1
저는 이렇게 풀겠는데요(오랜만에 고1수학 하니까 머리가 지끈거리네요). 근데 문제 보자마자 OA=OB일 때 최소라는 생각 든다는 건 공감함...