고난이도 문제 (1e)
이번 편은 특히 수준이 높습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
메가스터디 사문 2
메가패스 있으면 걍 사문은 윤성훈T 들으면 될까요 실모나 N제는 다른 분들거 좀 섞고
-
ㅇㅈ 6
-
짜파게티 4
-
이번에 과탐에서 사탐런 예정인 사람인데어준규 쌤 어때요? 지식밥차에서는 말이 귀에 박히던데
-
하... 헤어진 지는 한 두 달 정도 됐습니다... 진짜 전 그 친구한테 엄청 잘...
-
오늘한거 0
화2 주스 풀기.......(이게 끝이라고.....p)
-
다군이고 210명뽑고 계속 6칸 뒤쪽이었음..
-
올해 사문 7
올해 사문 전망이 어떤가요 한지랑 사문 중에 고민중인데
-
힙합추천 2
오이글리-1에서8 이거 ㄹㅇ ㅈ됨
-
@orbihaku
-
오르비를 0
심심해서 일년만에 다시 하니깐 꽤 재밌다
-
추억여행 떡밥은 어떨까요?
-
한번만 봐주세요.. 11
앞으로 이런 사진 다신 안 올릴게요 제가 판단을 잘못했어요 미안합니다 살려주세요...
-
욕 많이 먹어서 2
오래 살거같아요..
-
옯서운 사실 10
내가 벌점 0이다
-
그것은 바로 저의 {풀떼기}임 들어온 김에 구경하세요
-
우리 학교에 자칭 엉덩이 감별사가 있었음요. 그 친구는 쉬는시간마다 돌아다니며...
-
믿어요 여러분들
-
대체 왜
-
나는 병신호소인이었던거임...
-
오늘 애들끼리 밥 먹으면서 입시 얘기하다가 옯비 이야기 나와서 애들한테 모르는척...
-
혹시 르하임에서 재수 해보신분 계신가요? 아님 르하임처럼 고정석 없는 스카에서...
-
ㅇㅈ이라는 말은..
-
뭘본거야
-
- 5만원빵(~0원 조정 가능) - 저는 선택과목 언확사지1임 - 원하는 환산식...
-
좋은거봤다 4
줍줍
-
자취러에게 쿠팡보다좋은듯
1번은 223같고 2번은 좀 생각해볼게요;; 어유 노트가 주변에 없어서ㅠㅠ
정답
2번 대충 증명은 하겠는데... 아 정리가 안되네요ㅋㅋ 아침에 일어나서 노트에다 써봐야겠어요;;
1번답 127 맞나요?
1번. 자연수를 자연수로 보내는 함수 P에 대하여, P*를 다음과 같이 정의합니다: 임의의 수열 a(n)에 대해,
P*a(n) := a(P(n)).
그러면 (PQ)* = Q*P* 가 성립합니다. 이제 P(n) = 2n, Q(n) = 2n+1 이라고 합시다. 그러면
P*f(n) = f(n),
Q*f(n) = f(n)+1
이 성립하며,
Q*P*a(n) = a(4n+2)
P*Q*a(n) = a(4n+1)
이 성립합니다. 즉, argument를 작게 만들기 위해서는 P*를 나중에 적용해주어야 한다는 뜻입니다. 이 일련의 관찰로부터,
(Q*^6)f(1) = f(1)+6 에 대응되는 Q^6(1) = Q^5(3) = Q^4(7) = Q^3(15) = Q^2(31) = Q(63) = 127 이 f(n) = 7 의 가장 작은 해이며,
P*(Q*^6)f(1) = f(1)+6 에 대응되는 Q^6P(1) = Q^6(2) = Q^5(5) = Q^4(11) = Q^3(23) = Q^2(47) = Q(95) = 191 이 f(n) = 7 의 두 번째로 작은 해이며,
Q*P*(Q*^5)f(1) = f(1)+6 에 대응되는 Q^5PQ(1) = Q^5P(3) = Q^5(6) = Q^4(13) = Q^3(27) = Q^2(55) = Q(111) = 223 이 f(n) = 7 의 세 번째로 작은 해입니다.
2번. m(n) = n - [√n] 은 n까지의 자연수 중에서 제곱수의 개수를 뺀 것입니다. 따라서 m(n)은 a(k) ≤ n 을 만족시키는 k의 개수, 혹은 a(k)가 순증가하므로 a(k) ≤ n 을 만족시키는 가장 큰 k를 나타냅니다. 반대로, 주어진 k에 대하여 a(k) ≤ n < a(k+1) 이라면 m(n)의 값은 항상 k로 주어집니다. 따라서 우리는 a(k)를 다음과 같이 정의할 수 있습니다:
a(k) := "m(n) = k 를 만족시키는 가장 작은 n의 값."
여기서, m(n) = k 가 성립한다고 가정하고 경우를 나누어봅시다.
(1) 만약 n이 제곱수가 아니라면, [√n] = [√(n-1)] 이므로 m(n) = m(n-1)+1 입니다. 또한 -[√n] > -√n > -[√n]-1 = -[√(n-1)]-1 이므로, 이로부터 k > n - √n > k -1 임을 얻습니다.
(2) 한편 n이 제곱수라면, m(n) = m(n-1) 이며, k = n - √n 임을 알 수 있습니다.
따라서 우리는 위의 관찰로부터
a(k) := "n - √n < k 를 만족시키는 가장 큰 n의 값."
으로 재정의할 수 있습니다. 그런데 x - √x = k 의 양수해를 구해서 x에 대해 정리해보면
x = k + √((4k+1)/4) + 1/2
입니다. 여기서 만약 4k+1 이 제곱수라면, 이 수는 어떤 홀수의 제곱이므로, x 자신이 정수가 됩니다. 따라서 이 경우 a(k) = x - 1 = [k + √k + 1/2] 압니다. 그리고 만약 4k+1 이 제곱수가 아니라면, 역시 당연하게 a(k) = x - 1 = [k + √k + 1/2] 가 따라나옵니다. 따라서 원하는 바가 증명되었습니다.
정답
밑에껀 제가 근의공식쓰니깐 풀리긴한데 계산이.... 간단한 방법이 있을텐데......
군수열쓰면 되는군요
땡
쓰몀 됨 풀이가 한가지만 있는건 아닌듯....
1번 508?
ㅠ.ㅠ.. 아쉽게도
2번은 sos님 말고는 못푸실듯 하니
조만간, 별도로 풀이를 만들어 올리겠습니다.
2번 오늘 아침에 풀긴 했는데 이쁜 풀이가 아니라서ㅠㅠ
별도로 올라오는 풀이 봐야겠어요ㅋㅋ
2번 f(n)=n+[√n+1/2] 로 두면 n^2 n^2 +1/4 ≤ m < n^2 + 2n + 1/4 이므로
n^2 < m < (n+1)^2 과 동치. qed
1번: 2진법으로 생각해보면 2n은 n의 끝에 0을 붙이고 2n+1은 n의 끝에 1을 추가한 수.
따라서 1111111(2)이 가장 작고 10111111(2)이 두번째로 작고 11011111(2)이 세번쨰로 작은수.
환상적인 풀이군요 -ㅅ-b
허허허....ㅡㅡ
발상이 대단하네요