1/x 적분질문이요
함수1/x에서 x가 양의무한일때 함수값은0으로수렴하잖아요
근데x가 무한일때 적분값은 구할수없어요?
수열에서도 0으로 수렴하는 수열의 합은 존재한다고 되잇는데
적분이 작은 조각들의 넓이의 합이니까 조각이 0으로수렴하믄 합을 구할수잇어야되는거 아닌가요?
구분구적법으로 구할때 1/x도 x가 무한대로가믄 넓이의1/n조각인 함수값x밑변(1/n)이 0으로 수렴하지않아요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지거국 0
제가 만약 재수로 부산대나 경북대를 목표로하는데 그러면 미적 과탐을 해야하는걸까요
-
미적 수특 나왔나보네 12
학원학생이 지금 자이스토리 기출중인데 이거 뭐 어떻게 해야하지
-
예비 받으신분들 점공계산기보다 후하게나왔나요 짜게나왔나요?
-
연대 지반vs지방약 19
연대 지능형 반도체 •3년 학사+4년 석사+박사 •신설학과•집근처 지방약 •6년제...
-
[속보] 尹 "계엄은 '야당 경고' 아니라 '대국민 호소'" 2
'12·3 비상계엄 선포'로 탄핵소추된 윤석열 대통령이 "계엄 선포 이유는 야당에...
-
왜
-
제목 그대로
-
있으면 내가 했겠지 슈밤바
-
766.03이 최초합 컷인데 764.87이 예비도 못받다니
-
이틀전까지 다 풀다가 갑자기 오늘 원래 실력대로 돌아옴 걍 참고 계속...
-
올해는 사실상 서울대 연세대 한양대 < 없는 대학이라 보면 됨?
-
최초합 컷이 정확히 몇점정도 되던가요
-
잘 이해 안가긴 함 내가 과외생입장이면 선생이란 사람이 인터넷에 자기 얘기 올리고...
-
흠 일단 살 좀 더 빼고 생각해봐야제…
-
추합 어느정도 돌까요
-
내인생에서 가장 잘못된 점같음
-
제발 올라라.....
-
까먹고 있었음…
-
https://blog.naver.com/swift25/223736035847
-
만약 올해도 수능이 망한다면 바로 입대해서 군수를 하겠습니다 2번의 군수또한...
-
엔믹스레어먹엇다 3
히히
-
에 대해 어떻게 생각하시나요
-
개 웃기네
-
괜히 부정타는거 아닌가 몰라
-
낮잠자는거 좋아 0
자면 안되는 시간에 자는게 체력이 더 빨리 차는거 같음
-
아 진짜 장로팀도 힘들겠다 근데 이거 바론런 하면 순위따기 쉬운거아님? 농심 빨리 바론런 해라
-
신뢰구간 99.9%를 쓰지 않는 이유를 알려주는 짤 9
저런 이유 때문에 보통 신뢰구간은 95%에서 99%를 쓰곤 하는데… 갑자기...
-
ㅠㅠ
-
신발사고싶다 0
ㅠㅠㅠ
-
재수 1
재수해서 어느정도 대학가면 성공일까요 사실 인서울보다 그냥 요새 경북대가고싶은 마음이 들어서요
-
어디까지 갈 수 있었을까요? 이미 포스텍에 납치당하긴 했지만 순수궁금증.. 자전까지 가능했을까요..
-
재수 1
재수해서 어느정도가면 성공한것일까여
-
덕코 기부좀 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
학력평가 시험지 양식은 왜 안바꾸지 약간 촌시러움
-
합격ㅇㅈ 15
이렇게 사반수행…
-
[단독]경찰, '선관위 중국 간첩 99명 체포' 스카이데일리 수사 착수 9
(서울=뉴스1) 유수연 박혜연 기자 = 중앙선거관리위원회(선관위) 청사에서 중국인...
-
저는 중경외시~건동홍 자연계를 목표로 하는 예비고3 정시러입니다. 고2 기준...
-
십만단위는 어떻게 하는겨
-
아 다시 보는데 그냥 개 쳐 웃기네 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
시대 기출 0
이거 수학 공통 시즌2에 들어갈려는데 그때도 줄까요?
-
체력 다망햇네 6
아이고... 힘들다
-
고대 특유의 다같이 으쌰으쌰하고 단합 잘되는 분위기를 좋아해서 고대쓰고싶었는데...
-
말까요?
-
1학년 다니다가 군대가고 작년에 전역해서 바로 수능봄 아직 결과 안나왔으면 일단...
-
개졸리네 2
개돌리네 개졸리네 개졸리네
-
연대식 703.59였는데 털그에서 계속 705점이 연경제 떨어진다고 하고 진학사...
-
본가에 가있으면 꽁돈이너무나가지 않나요ㅠ
-
정확히는 연대 69x / 고대 65x 입결하락으로 인한 내려치기는 커뮤니티에서만...
원하시는 답인지는 모르겠지만 ㅠㅠ ... n이 무한대일 때 시그마 k=1에서 n까지 k분의 1, 즉 1+(1/2)+(1/3)+(1/4)+......+(1/n)은 수렴이 아닌 발산을 합니다.
다음과 같이 증명할 수 있습니다.
1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+(1/8)+......+(1/n) > 1+(1/2)+(1/4)+(1/4)+(1/8)+(1/8)+(1/8)+(1/8)+....... = 1+(1/2)+(1/2)+(1/2)+.....(발산)
부등호 오른쪽의 값이 발산하기 때문에 자연스럽게 왼쪽의 합도 발산하게 됩니다.
구분구적법에서 (1/n) x (1/n) (n으로나눈 밑변 x n번째함수값=높이)니까 n번째 작은한조각의 넓이는 n제곱분의 1이되지않나요? 그때도 저 급수가 발산하나요?
별거아닌데 너무궁금해서ㅎ
감사합니다
잘못생각하시는 부분이 있네요.. 1/n 등분해서 k번째 함수값이 높이가 되니깐 (1 / n)*(1 / k) 이여야지요.
n제곱분의 1 합의 급수는 수렴합니다. 정확한 값이 6분의 파이(...)였던 걸로 기억하네요.
적분중에 이상적분이라고 하는것이 있습니다..
1/x를 무한대까지 적분을 할때에는 1/x를 a부터 k까지의 적분값을 구한후, k를 극한값을 취해서 무한대로 보내버리면 됩니다.
1/x의 a부터 k까지 적분을 해보면 lnk-lna이고 여기서 k를 무한대로 보내면 lnk-lna는 무한대로 발산해버리므로
1/x의 무한때까지의 적분값은 존재하지 않습니다.
대학 교과과정인 적분 판정법으로 쉽게 증명 할 수 있습니다.
증명은 생략하고 결론만 말하자면 1/x 의 무한급수는 발산합니다.
일반화 하면 무한급수 1/(x)^n에서, n이 1보다 작거나 같으면 발산, 1보다 크면 수렴합니다.
이것을 P-급수 판정법이라고 말합니다.