미통기 정적분의 기본정리 설명하는거 개념부분질문요!!
정적분의 기본정리에서
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여기서 구천만정도
-
충남대 화공교육 4
이거 원래 거의 다 1차는 붙여주나요 ?? 54245 인데
-
사람이 어떻게 외모만으로 모쏠일수가 있나요...다 복합적인 원인이 있는거지 외모가...
-
난 3~4바퀴 중대 중앙대 다군 추합
-
어그로,태그 죄송합니다 본인은 지금 영어 3~4등급이고 예비 고3임(내신은...
-
투표 ㄱㄱ 3
-
졸려요 3
-
기계랑 화학이고 둘 다 추합권이에요. 에리카가 광운보다 1시간 정도 더 멉니다....
-
막날에 조작표본들 성적표 인증 처리해준거 이거때문에 진짜 곳곳에서 빵났던데
-
점공 개망했네 0
상향이긴 했는데 이정도일줄은 몰랐네 ㅋㅋㅋ
-
ㅈㄱㄴ
-
지근빨리 문의 ㄱㄱ
-
어제 코노갔다가 4
몇살이냐 물어보길래 22살 04라 하니까 신분증 보여달래
-
대체왜? 표본보려면 인증하고 들어오라고
-
과준실 0
과외준비하기싫다는 뜻
-
내가 볼경기만
-
알가싫 0
ㅠㅡㅠ
-
2025더프 솔리트 7,8,9,10 2025 더프 10월 사탐 전체(해설지 포함)...
-
둘 다 한달 75인데 다 이 가격 주고 다니는거 맞나요?
-
위경련 하....
-
1월 10일까지 예측 무료공개라 되어 있길래..
-
알바비 0
두개 한달하면 101만원 버는데 적네...
-
과탐 원과목 3
탐구선택 바꿀지 고민중인데 현역때 물1이었는데 물1 쭉 밀고 가는게 나을까요.....
-
얼마나 행복할까 힘든 시기만 지나면 돈 잘 벌고 명예 있고 사람들이 우러러 보고 정년 없고 개부럽다
-
이새끼 왜이래이거
-
교차러들로 가득가득차서 절때로 못뚫을거 같았었는데 그 사람들 다 어디간거임
-
따뜻뭉클글썽훌쩍
-
김동욱 선생님이 더 나을거같다고 생각을 했어요 2등급 아래로는 양부족, 태도문제일...
-
그걸 열등감이라고 싸잡아 말하는 사람들이 있더라 특히 뉴스 댓글 열등감에서 나오는건...
-
생각도 못했네 왜지.. 고경제 고중문 고자전 이 셋중에서 고민함..
-
꼬우면 다른 대학들은 조발을 하도록
-
1. 터미널을 깐다.( 윈도우는 작업 관리자, 맥은 터미널이 기본으로 되어있는걸로...
-
친구가 없는거 아니냐는 나쁜 말은 ㄴㄴ
-
심리학 공부하는 곳인데 인간의 심리를 정확히 꿰뚫어서 스나하신 분들 아님? 학종...
-
슬포 ㅠㅠㅠ
-
배도변인가 변도변이었던걸로 기억함 둘 다 조금 쓰였던걸로 앎 도변씨 뭔가 친근해보임
-
자료 말고 수업 연습해서 가시나요?
-
싱가포르 력
-
점공 있으신분 있나요 쪽지좀 부탁드립니다
-
쌍지나 쌍사를 해서 즐겁게 개념강의를 들으며 행복한 수험생활을 보내고 싶구나..
-
언매올인원 0
25수능 언매 올인원 책이 있어서 그대로 쓰려고하는데 26올인원 강의를 보니...
-
이런건 다 자습주나요?? 고3때 쌤들이 자습 많이 주시나여
-
고대가고싶다 ㅜㅜ 공부열심히해서 고대쟁취
-
재입학하러 가는데 다른데 붙으면 안가려구여..
-
오르비에 나보다 영어 못하는 사람은 없을거라고 확신할 수 있음 5
ㅈ반고 고1내신 영어 5등급 고1모의고사 4등급 고정 6번의 평가원 시험 중 5번...
-
추천이 0.65인데 이거에 맞게하는게 더 정확한가? 난 일단 0.8로 하고있는중인데...
-
과중고 이과 생명 생기부
정말 이 글 보시는분 아시면 가르쳐주세요 독학하는데 이것땜에 진도도 못나가요..ㅠㅜ
정적분의 기본정리 쓰시면 증명되요.
제말은 정적분의 기본정리를 증명할때 적분과 미분의관계로 증명을하는데 적분과미분의 관계에서는
a,b 사이의 x값에서 x가 a보다 큰경우만을 증명했는데 정적분의 기본정리가 증명된걸보면 위끝과 아래끝이
바뀌어도 성립하니까 적분과 미분의 관계에서도 x가 a보다 작아도 성립되는지를 물었는데 ㅠㅜ
제말은 정적분의 기본정리가 적분과미분의 관계로 증명이되는데 정적분의 기본정리에서는 위끝과 아래끝이 바뀌어도 상관없이 성립하는데
적분과 미분의 관계를 증명할떄 x가 a,b사이에 있고 a보다 큰경우만 성립됐는데 그러면 적분과 미분의관계에서 x가 a보다 작은경우에도
성립되는지를 물었는데요 정적분의 기본정리 쓰시면 증명된다는말은 뭐예요 ㅠㅜ
'정적분의 기본정리', 혹은 원래 명칭인 '미적분학의 기본정리'와 적분의 가장 기초적인 성질 몇 가지로부터 바로 증명 가능합니다.
c < x < a < d 라고 하고, 함수 f 가 [c, d] 위에서 정의된 연속함수라고 합시다. 그러면
F(x) = ∫_{from a to x} f(t) dt
역시 [c, d] 위에서 정의된 함수가 됩니다. 그리고 적분의 가장 기본적인 성질로부터
F(x) = ∫_{from c to x} f(t) dt - ∫_{from c to a} f(t) dt
가 됩니다. 따라서 정적분의 기본 정리로부터, 첫 번째 항은 미분하면 f(x)가 되고 두 번째 항은 상수함수의 미분이 되어 0이 되므로,
F'(x) = f(x)
가 성립합니다. 그리고 만약 f(x)가 그냥 연속함수라면, 그 정의역 내에서 x를 포함하고 c < x < d 를 만족시키는 아무 폐구간 [c, d]를 잡아서 위 논리를 적용하면 되므로, 결국 밑끝과 위끝의 대소관계는 논리에 전혀 영향을 주지 않습니다.
글쓴이인데 옛날아이디 생각이안나서 답장남깁니다 오랜만에 오르비 들어와서 읽어봤는데
적분 논리를 이해하는데 큰 도움이 됐습니다 읽으실질 모르겠지만 감사합니다.