수리굇수님들아 이문제좀 도와주세요
수열[an]을 다음과같이 정의할때, 모든 n에 대하여 an>2임을 수학적 귀납법을 이용하여 보이고, an+1 -2<1/2(an -2)가
성립함을 설명하시오.
a1=3, an+1=1/2(an+ 4/an)
일반항조차 못구하겟네요..
수리굇수님들 알려주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대체왜? 표본보려면 인증하고 들어오라고
-
과준실 0
과외준비하기싫다는 뜻
-
내가 볼경기만
-
알가싫 0
ㅠㅡㅠ
-
2025더프 솔리트 7,8,9,10 2025 더프 10월 사탐 전체(해설지 포함)...
-
둘 다 한달 75인데 다 이 가격 주고 다니는거 맞나요?
-
위경련 하....
-
1월 10일까지 예측 무료공개라 되어 있길래..
-
알바비 0
두개 한달하면 101만원 버는데 적네...
-
과탐 원과목 3
탐구선택 바꿀지 고민중인데 현역때 물1이었는데 물1 쭉 밀고 가는게 나을까요.....
-
얼마나 행복할까 힘든 시기만 지나면 돈 잘 벌고 명예 있고 사람들이 우러러 보고 정년 없고 개부럽다
-
이새끼 왜이래이거
-
교차러들로 가득가득차서 절때로 못뚫을거 같았었는데 그 사람들 다 어디간거임
-
따뜻뭉클글썽훌쩍
-
김동욱 선생님이 더 나을거같다고 생각을 했어요 2등급 아래로는 양부족, 태도문제일...
-
그걸 열등감이라고 싸잡아 말하는 사람들이 있더라 특히 뉴스 댓글 열등감에서 나오는건...
-
생각도 못했네 왜지.. 고경제 고중문 고자전 이 셋중에서 고민함..
-
꼬우면 다른 대학들은 조발을 하도록
-
1. 터미널을 깐다.( 윈도우는 작업 관리자, 맥은 터미널이 기본으로 되어있는걸로...
-
친구가 없는거 아니냐는 나쁜 말은 ㄴㄴ
-
심리학 공부하는 곳인데 인간의 심리를 정확히 꿰뚫어서 스나하신 분들 아님? 학종...
-
슬포 ㅠㅠㅠ
-
배도변인가 변도변이었던걸로 기억함 둘 다 조금 쓰였던걸로 앎 도변씨 뭔가 친근해보임
-
자료 말고 수업 연습해서 가시나요?
-
싱가포르 력
-
점공 있으신분 있나요 쪽지좀 부탁드립니다
-
쌍지나 쌍사를 해서 즐겁게 개념강의를 들으며 행복한 수험생활을 보내고 싶구나..
-
언매올인원 0
25수능 언매 올인원 책이 있어서 그대로 쓰려고하는데 26올인원 강의를 보니...
-
이런건 다 자습주나요?? 고3때 쌤들이 자습 많이 주시나여
-
고대가고싶다 ㅜㅜ 공부열심히해서 고대쟁취
-
재입학하러 가는데 다른데 붙으면 안가려구여..
-
오르비에 나보다 영어 못하는 사람은 없을거라고 확신할 수 있음 5
ㅈ반고 고1내신 영어 5등급 고1모의고사 4등급 고정 6번의 평가원 시험 중 5번...
-
추천이 0.65인데 이거에 맞게하는게 더 정확한가? 난 일단 0.8로 하고있는중인데...
-
과중고 이과 생명 생기부
-
과고준비때문에물화생1과목에올림피아드까지해야한다고요
-
[속보] "김건희 여사 석사 논문은 표절".. 2년만에 결론낸 숙명여대 3
[속보] "김건희 여사 석사 논문은 표절".. 2년만에 결론낸 숙명여대
-
그래야 정신차리고 공부하지
-
국어: 6월까지는 EBS와 기출분석에 집중하고 8~9월부터 실모 개수를 늘림 9월...
-
등원 하원 시간 잡아주는 거랑 핸드폰 관리 같은거만 해주는 곳도 있나요? 통제가...
-
강의 올라오기 전 일주일 동안 해당 지문들 매일 한번씩 천천히 읽으려고 하는데...
-
재작년에 우리학교 전교1등이 한양대 공대 떨어지고 수시 6광탈후 재수해서 학교가...
-
서울 중에서는 성대뿐인가요?
-
유구한 갈드컵 주제 18
빠따 vs 단검 지라리야 vs 이타치 또 머잇을까 재밋는거
-
‘수시로 서울대를 가는 사람이 1명이라도 있는가.’ 매년 1명이상 가면 평반임
-
무엇이 더 짜릿할까
-
아니 컨텐츠 관리자님 15
대체 정모 언제하는거에요 그거만 기달리잖아 나
-
진지하게 늦어도 고2 때부터 내신 다 던지고 정파 전향임뇨 저긴 재능 플러스...
못알아 보겟어요.......ㅠ
1/2(an+4/an)에서 an+4가 a의n+4인가요 an + 4인가요?
an +4/an이요.. 분수임
an + 4/an 이란말이네요 ㅋ 띄어쓰기라도 해주셔야 알아볼듯 ㄷㄷ ㅋㅋ
아 그렇네요 ㅋㅋㅋ
못알아보실수있겟어요
푸는방법좀 알려주세요 ㅎㅎ;
지금 폰이라 잠시만요 ㅋㅋ 곧 풀이 올려드릴게요 ㅋㅋㅋ
감사합니다 비밀글로부탁드려요 ㅋ;
a1=3 이고 an+1 = an/2 + 2/an 이므로 a2=13/6 이됩니다
이걸 차례대로 대입해보면 an>0이란 사실을 알 수 있죠 (양수 + 양수 = 양수)
그럼 산술-기하평균에서 an+1 = an/2 + 2/an ≥ 2 임을 알 수 있습니다 따라서 an > 2 가 나오죠
그리고 an+1 -2<1/2(an -2) 에서 an+1 = an/2 + 2/an 을 대입하면
an/2 + 2/an -2 < an/2 -1 이 되고 이를 다시 전개하면 an>2가 됩니다 이는 처음 전제와 같죠
풀이가 확실한지는 모르겠지만 대충 답은 나오네요 ㅋ
그렇게푸는거맞는거같아요 ㅋ
그럼 하나만 더물어볼게요
그문제에 lim an은 어떻게구하죠 ㅎ;
an+1 = an = x 로 두고 주어진 점화식을 방적식으로 바꾸셔서 푸시면 답 나와요 ㅋ (편법이지만)
그럼 수렴하는 값은 x=±2가 나오는데 주어진 식에서 an>2라고 했으므로 수렴하는값은 2가 나오겠네요
감사합니다 ㅎㅎ
넹넹 ㅋㅋ
수리괴수는 아니지만 한번 풀어봣는데요.. n=1 일때 a1>2 이므로 성립합니다. n=k일때 ak>2 이라 가정해봅시다. ak가 양수이고 정의에 의하여 ak+1=1/2(ak+4/ak) 인데 우변에서 산술기하에 의해 좌변 ak+1 > 2 이므로 수학적귀납벌을 통해 모든 n에 대하여 an>2 임을 증명햇네요.
an+1=1/2(an+4/an) 에서 양변을 -2 하고 정리해보면 an+1-2=1/2 (an-2)(an-2)/an 이고 즉 an+1-2 = 1/2(1-2/an)(an-2) 로 표현할수 잇어요. 이때 모든 n에 대하여 an>2 이므로 0 < (1-2/an) < 1 입니다.
즉 an+1-2=1/2(1-2/an)(an-2)에서 0< (1-2/an)< 1 이므로 an+1-2 < 1/2(an-2) 가 성립하네요.
오랜만에 풀어보는거라.. 혹시 틀린거 잇으면 알려주세요 ㅠㅠ;
틀린거없으신거같아요 완변한데요 ㅋ
하나만 더 질문할게요
lim(n은무한으로)an을 방금제가물어본 문제의 결과를 이용하여 구하는거예요. ㄷㄷ
0 < an+1-2 < 1/2 (an-2) < ... < (1/2)n승 × (a1-2) 에서 n을 무한대로보내면 위 부등식에서 맨왼쪽항과 맨오른쪽항이 0으로 수렴하므로 샌드위치정리(?)에 의해 an+1-2도 0으로수렴하고 an+1, 즉 an은 2로 수렴하네요
님하야 이거 학원 논술숙제자나여 ㅋ
네ㅠㅠ 문제보고 30분넘게고민하다가 모르겠어서 질문했어요 ..
헐 논술문제시면 저처럼 푸시면 안되요 ㄷㄷ
편법이 들어가있어서;;;;; 우선 귀납적방법도 아니구요 ㅜ
그래도 방법은알았으니 더고민해보고 풀어볼게요 ㅎ
이거 옆에 지문보고 그지문바탕으로 쓰셔야할텐데,,
근데 이거 lim(n무한대) an 답은뭔가요?
서메다니시는 동지분 하이여답은2요
맞았넹ㅋㅋ
an-2를 bn으로 하고 뭐어케어케서술은했는데
결국엔 답구할때는 귀찮아서 알파설정해서 방정식 계산해버렸어요ㅋㅋ
뭐야 이거 서메 논술 문제 숙제 아님?ㅋㅋㅋㅋ
논제1번의 2가지질문 모두 수학적귀납법을 활용하면 쉽게 풀립니다.
그리고 일반항 구해서 극한값 구하는문제가아니라 제시문(다)에 의하면 극한과 부등식-> 샌드위치 정리를 활용하는것이 맞을거에요.
논제1번의 a(n+1)-2<1/2(an-2) 을 활용하여 샌드위치 만들면 된답니다.
lim an =d 라 설정하고 방정식풀면 0점일겁니다;
an이 수렴하는지 발산하는지 모르는상태에서 그렇게 수렴한다고 정해버리면;
bn을 설정하고 샌드위치정리에 의해 lim an이 수렴한다는것을 먼저 서술하였고
그후 방정식으로 풀었어요;;