3차함수 문제 풀어보세요~^^
게시글 주소: https://orbi.kr/0002798437

작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
더프 어쩌구 저쩌구 하는거 들음
-
진짜...
-
ㅈㄱㄴ
-
이재명은 합니다 4
입 벌려 찢어버리게.
-
라는 말은 하지맙시다. 천박하게 뭡니까
-
밥먹을때 보면 유익하고 재밌음
-
대성패스 양도 0
대성패스 23에 양도합니다
-
롤하고싶은데 0
피방가기가 귀찮다
-
히히
-
작년에는 쉬운줄 알고 워크북 유기했었는데 올해는 해보니까 난이도 꽤 높네 ㅇㄴ.....
-
살기 싫다 6
귀찮아
-
봐봐 너무 뿌듯하네
-
수헬리베붕탄질산플네나마알규인황염아칼칼
-
누군데
-
윤석열도 날아갔겠다 킬러문제 부활시키고...
-
저는 이게 더 좋아요
-
기교가 기교긴한데 바로바로 되면 주접은 아닌거같기도함
-
반갑노 게이야
-
몬가 감각적으로 개형잡았는데 윽건햄 풀이보이 과정 거의비슷해서 소름돋음ㄷㄷㄷㄷ 드디어눈을떠버렷따
-
그냥 안만나고 집에서 얘랑 데이트할래
-
저게 왜 메인 1
ㄷㄷ
-
오늘은 그대가 날 떠나가는 날이래요
-
오늘 검고 치신 분들 수고하셨습니다! 검정고시 정답
-
이제 그림 굳이 인터넷에서 안 찾고 지피티한테 시켜도 될 듯 3
그림체까지 요청할 수 있으니까 걍 내가 원하는 그림이 바로 나옴
-
삼성 야구 보기
-
조만간 1
일일 롯데팬이 될 예정 지역이 지역인지라…
-
왜 날버리고 갔나요
-
비주얼 보고 뇌정지 3초 와서 바로 풀이 못들어감
-
고3 3모 55점으로 4등급 나왔습니다 겨울 방학때 얼오카랑 매월승리 커리타면서...
-
차영진t 중등고1 무한적용으로 바꿔도될까요?
-
먼가 잘 못 된거 같지?
-
7시 10분부터는 키타니 타츠야 참고로 일본에서 제일 음향 좋기로 유명한 K-아레나...
-
6시 10분에 봐요
-
뉴런 공부할 때 0
수12확통 동시에 진도 안나가고 수1-수2-확통 혹은 수1&수2-확통 런식으로 해도 괜찮나여?
-
어우 속이 좀 안좋네
-
4~5등급이 제일많은데 뉴런, 유빈이에서 서킷 브릿지를 뽑아씀 시발점을하라고시발점을
-
오르비언 조아해 2
다들 너무 착하구 재밌구 웃기구 사탐해야게따
-
사실 사설이 작년 9평,작수공통처럼 쉽게 내면 사설 푸는 의미가 없어진다고 생각함...
-
인스타 땄다 1
잇올 같이다니는데 단과도 같이 다니길래 내신 휴강전에 말걸었다 3수를 할지라도...
-
홀려버려써 나!
-
수학 노베라서 정승제 중학수학특강부터 다시하려는데 문제집 반드시 필요하나요?
-
대신에 법을 잘하면 되잖아..?
-
물보
-
3모 미적 8
14,28찍맞 88점 15번 감안잡혀서 패스 21번 케이스 더 안구한듯 30번 그냥...
-
3시간째 나갈준비생각중
-
왜 아무도 연락 안해줬어요 ㅠㅠ
-
민증검사 6
조금이라도 애매하면 바로 엄청 깐깐하게 검사하는데 진짜 성인 맞으면 손님이...
-
구함
-
5등급정도 노베라고 했을때요
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??