수리 호구좀 살려주세요 부탁드립니다
1.저기 빨간색 처럼 하면 왜 안되나요ㅜ 그냥 처음부터 식을 먼저 미분해서 구한 f'(x)에 1대입한 값은 f'(1)=3 이건데
마지막줄에 빨간색 밑줄그은 f'(1)=1 왜 두개가 다르죠 ? 뭐 어디서 잘못된건가요 ..
2. f(ax+b)이걸미분하면 왜 f'(ax+b)×a가되죠? 이게합성함수인가요.. 자세히설명좀 부탁드려용
답글다시면 수능대박날거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[화학 논술] 연세대 미래캠 의예과 논술 마지막 기회 0
안녕하세요, Uni-K LAB 입니다 우선 수능을 치고 온 여러분들 모두 수고...
-
다시는 원주가지 않겠더 12
안그래도 논술도 망했는데 거기서 5시 반에 출발했더니 강남 고속터미널에 10시에...
-
원주 5
생각보다는 번화한데 번화가 크기가 애매하게 작네요 희안하다 ㅎㅎ 공기는 좋아요
1. 첫 번째 빨간 부분 전체가 전혀 엉뚱한 이야기입니다.
g(x)/h(x) 꼴을 미분하는 데 분모와 분자를 동시에 미분한다는 건 말도 안 되는 소리죠. 마치 g(x)h(x) 의 미분이 g'(x)h'(x)라는 소리와 같습니다.
아마 x→1 일 때 f(x)의 극한의 꼴이 어떤 함수의 미분계수를 가리키는 듯한 인상을 받으신 데다가 로피탈이라는 무기를 익히고 있어서 저런 착각을 하신 것 같습니다.
물론, 주어진 극한은 어떤 함수의 미분계수로 생각할 수 있습니다. 구체적으로, g(x) = x^2 + x + a 라는 함수의 x = 1 에서의 미분계수를 구하는 식이 됩니다. 그러나 그 뿐입니다. g(x)와 f(x)는 다른 함수입니다. 따라서 우리가 얻는 결과는 f(1) = g'(1) = 3 이지 f'(1) = 3 이 아닙니다.
2. 합성함수 미분으로 생각할 수도 있고, 정의로 보일 수도 있습니다.
아 이제 이해 확실히 되네요 ㅎ 어제 보고 오늘 다시 보니까 다시한번 감사드림 ^^
아..그렇군요 감사합니다ㅜ 미통기처음이라그런지 개념이안서네요