ebs 파이널 수리가 14번 ㄷ번 행렬좀 알려주세요...
영행렬이 아닌 행렬 A의 제곱은 0 .
ㄷ ) A=B제곱 을 만족하는 행렬 B는 존재하지 않는다.
해설에 B의 4제곱은 0 --> B의2제곱은 0 이라고 되어잇는데.....
어떻게 이렇게 생각하는거죠????
고수님들 도와주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실친이없음
-
1년동안 사람 안을 기회가 없었다 손 들어잇
-
뉴비 오프닝 6
백일 때 스카치갬빗흑일 때 상대 e4면 오픈게임 상대 d4면 잉글런드 갬빗해요....
-
마크도 공부해야 1등급 나오겠네
-
3시자는사람은나약함
-
ㅇㅈ합니다 3
팜하니나 보고 가라
-
할거추천받아요 6
ㅠㅠ
-
정시의벽<< 못생긴 거 알고 절대 인증 안 함
-
현우진 시발점 2
20분동안 1번에서 19번까지 15번 빼고 다 풀었는데 시발점 들어야할까요? 예비고3입니다
-
미쳤네 근데 이러면 413~416 다 튀어버리고 꼬리 멸망해서 실지원 후 최종컷은...
-
저번 그 사람 보고나서 절대 못하겟슴 ㅋㅋ
-
대학 2급 오르는정도라는데 진짜에요?
-
수락 안하는게 나음?
-
이즈 굿 4
-
지금 갈 건 아니고 원서영역 정리될 때까지 있을 거긴 해요
-
도리깨 에임 제외하면 에임 필요없는 새끼 궁극기 하나는 개사기인 새끼 쿠키로 살리는...
-
안자는사람더코드림 20
선착순네명
-
선넘질받 23
이러는 글에서 선 넘는 질문 별로 본 적 없음
-
저처럼!
-
걍 대성쪽에 새로찍는분들거 들을까요
-
강기분이나 듣고 자야지..
-
10초에 글 1개씩 지워도 하루동안 글을 다 못 지움 13
어이가 없네 그냥 ㅋㅋㅋㅋ
-
리리 같은 똥캐로는 이길 수 없어 ㅠㅠㅠㅠ
-
how
-
꽤 열심히 했는데 아니 3일치도 못지웠다고 아직.. 똥글을 얼마나 싸댄거뇨
-
바둑도 수읽기 싸움 들어가면 재밌는데 포석은 재미없고 체스도 한번 시작해볼까?...
-
넘 좋당
-
잠자기
-
부산은 막 추천이 쏟아졌는데 대전은 성심당 성심당 성심당 일거 같아 뭔가 좀 두렵군요 ㅋㅋㅋ
-
언미물화 질문 받습니다 10
언미물화 질문 받습니다
-
박기호쌤 논술 0
박기호쌤 논술수업 현강 들을까여 아님 대치 다른학원 다닐까여 로고스같은
-
일신우일신 과목 별 기본적인 개념에 대한 이해와 적용을 중점적으 로 서술한...
-
시간 ㅈㄴ 빠르노
-
세번째 자리 0이면 딸피 맞는거 같기도
-
05가 애기취급받던때가있었는데...
-
내 인생의 절반을 줄테니까, 네 인생의 절반을 줘!
-
이유:내가 04라서 03부터는 나도 몰루
-
옛날엔 안 그랬는데 13
요즘 격겜 / 리겜 류가 좋아짐 틀 되어가는 중
-
재밌습니다
-
잔다..
-
리리 니나 샤오유 내 모스트 픽들 예쁘고 쉽?고 재밌음
-
이번에 2
사문 어려웠었어요 ??
-
나만운없네 8
딩선족다쳐내
-
왜 봉선동으로 안옴ㅠㅠ
-
근데 먼가 오랫동안 따뜻한 물에 들어가 있고 싶기도 하고..
-
더 들을거 추천해주세요
-
과제는역시 8
내일하는것
-
오늘의 야식은 5
짜파게티랑 김치 음료수는 콜라
B가 0인경우는 당연히 안되구 0이 아닌경우 B의 네제곱이 0이니깐 B는 역행렬이엄슴니당
따라서 케일리헤밀턴으로 B의제곱은 (a+d)B가 되구 B의 네제곱이 영이니깐 a+d 는 0이 되서 B의 제곱이 0이됩니당
89년생 ㅡㅡ;;; 저랑 동갑이시네요. 힘내시라는 의미에서 ㅠㅠ
B^n = O 에서 B가 역행렬이 존재하면 양변에 B역행렬을 곱해나가면 결국 B= O 가 되므로 B가 역행렬이 존재한다는 가정에서 모순됩니다.
따라서 B는 역행렬이 존재하지 않고, 따라서 B의 ad-bc 값이 0이 됩니다. 여기서 행렬 B에 대해 케일리 해밀턴 정리를 쓰면, B^2 - (a+d) B + (ad - bc)E = O 에서 ad-bc=0이므로
B^2 = (a+d)B 가 나오고, 양변에 B를 곱하면 B^3= (a+d)B^2 = (a+d)^2 B 따라서 B^n = (a+d)^(n-1) B
B^n = (a+d)^(n-1) B = O 에서, a+d= 0 이거나 B가 영행렬이라는 결론을 내릴 수 있는데, ① a+d가 0 일 때 B^2 =O ② B=O
이라는 결론이 나옵니다. 어쨌거나 B^ n = O 이면 B^2 = O 은 성립합니다. 이는 필요충분조건입니다.
고로 A = B^2 에서 A^2 = B^4 = O 인데 이는 B^4 = O 은 곧 B^2 = O 이므로 A^2 = B^4 = B^2 = O 인데 A=B^2 이라 했으므로 A= O 이라는 결론이 나옵니다.
그런데, 영행렬이 아닌 A라고 했으므로 존재하지 않습니다.
두분다 ㄳㄳ합니다!!....89생 화이팅 ㅠㅜ