[2-4] 경우의 수, 사건파악, 사건설명, 경우의 수 세기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매 1컷 0
언매 공통 -9틀이면 무조건 2라고 봐야 하나요?? 아니면 그래도 1컷에 걸칠까요...
-
분명 국어까진 긴장했고 수학 다 풀고 올해 가겠다라는 느낌이 들었는데 점심시간에 답...
-
만약에 사문하면 6
메가는 윤성훈밖에 없음? 윤성훈 듣기 싫은데
-
뭐하고지낼까
-
다들 어떻게 생각하심
-
입결 제일 낮은과 써도 고대는 어려울까요?
-
국수영지구사문 (언매 미적) 표준점수 예상 131 131 2등급 61 67 원점수...
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
첫담기념 질받 29
반가워요 선넘도괜찮으니 질문해주세요
-
이러면 2컷 80밑은 확정인듯
-
육군 군수 2
12월 9일 입대 입대전 지2 개념한바뀌 할말? 사실 근데 군수할지말지도 확정 못 하긴 함..
-
ㅇㅈ 5
ㅂㄱㄸㅂㄱ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
일어나자마자 6
펑펑
-
의치한약수/설높공~낮인문까지 서로 섞여서 잘 모르겠음
-
ㅈㄱㄴ 평가원 중에도 선별한 건지 모두 넣은 건지 궁금해요
-
ㅇㅣ제 오르비만 할게요
-
올해는 수능 기준 3합5에 80퍼 3합 4에 100퍼 준 거 같던데
-
2020년이 엊그제 같다 코로나가 엊그제 같다 03년생들 22수능보러갈때 중학교...
-
아 ㅅㅂ 나 뭐했냐
-
125명 중에 3등떠서 안정 나오는디 방심 ㄴ?
-
ㄹㅇ ㅇㅈ 11
ㄹㅇ 올해 초에 난 내가 20살을 이렇게 보낼 줄 몰랐지
-
왜 오르비하노 ㄹㅇ
-
아 손목아파 4
얼불춤을 너무 열심히 했나
-
공통만 틀 원점수 80보다 공통 안 틀린 80미만 원점수가 표점 높게 나올 수도 있나요
-
쿠쿠웅
-
김범준T 인강 1
수1, 수2는 차영진T 십일워로 한바퀴 돌렸고 십일워크북이랑 쎈B 정도 풀었으면...
-
붙으면 장땡아녀?
-
07임 뭔가역전된느낌임... 07이05한테...
-
종합 두개나 떨어지니까 남은 4개도 불안해지네ㅆ,,,, 희망은 고대 뿐. 붙여줘 제발
-
수능일기준 50일전 즉 9월25일로 돌아간다치면 그때 수능까지 시간이 짧았었던 것...
-
제곧내 아는사람 제발 댓글좀 써줘요 ㅠㅠ
-
과탐만 잘봤어도 ㅎ
-
메디컬은 가야되서 과탐은 해야되는데 진짜 뭐하죠 물리는 아예안해서 째끼고 화1...
-
이땐 참 어렷구나
-
ㄹㅇ임?
-
ㅇㅈ 10
어딘지 맞추긴 쉬울거에요 수능 사흘전 어디선가 찍은 사진
-
할 수 있는 활동은 다 해야 하고 학급임원에 발표에 쌤 이거 생기부써주실수있나요에...
-
에반데 진짜 사문 정법 해야하나
-
실채뜨면 4
진짜 떨어짐?? 텔그 20프로 진학사 2칸씩 막 떨어지나,, 생각하니까 벌써 시무룩하네
-
아까처음담배펴봤는데 22
아직도폐가시린느낌이야...
-
아닌가 사탐고르고 국수 펌핑시켜서 한약수 노려볼만하지않나
-
경영이 목표인데 그건 어려울거같고 경제도 잘 모르겠고 사회학과가서 복전이나 전과하려는데 가능?
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
현역 때 정시 시작하면 삼수로 대학 간다
-
타로점 봐드립니다(2) 82
말 그대로 타로점 봐드려요. 가벼운 주제는 보고싶은 주제+1~78 중 숫자 3개...
-
기말이 12.5에 끝납니다. 12.10쯤부터해서 3월전까지 정시 베이스깔 생각입니다...
-
오늘을 즐겨!!
데헷 ㅎㅎ
9
앗 강옯 한번 가겠습니다!! ㅋㅋㅋ!!
어떤 색깔도 쌤한테 안어울릴 경우의 수는 0 인것 같읍니다
오늘 서술의기본편 끝냈어요!
전에 쪽지로 질문드려서 잘 해결했습니다 :)
근데 문제를보고 풀이방향이 안떠오르는건 제 실력부족인데 이걸 어떻게 채워야 할지 고민입니다.
이대문제였던 것 같은데
a4 = 1/2^3 sin파이/2^4 임을 서술하라는 문제?에서
(지금 책이 없어서 확실하지 않아요ㅜ)
cos을 sin으로 바꾸기위해 cos^2x+ sin^2x =1 임을 활용할 생각에만 집중해서 결국 답지보고 반배각공식을 활용할 수 있구나 알았거든요 ㅜ
이런경우에 답지보고 선생님의 생각방식을 배워가는 것으로 충분할까요?
그 문제의 경우 여러 가지 방법으로도 풀 수 있는데,
1."2^3 a_4 sin pi/2^4 =1을 먼저 증명하자"하고
논제의 결론을 살짝 바꿔서 좌변부터 계산하기 시작하는 증명하는 방법이 있고,
2. 논제의 결론을 바꾸지 않고 시작하는 경우에는 좌변부터 시작했다면
a_4 =cos pi/2^4 a_3
으로 시작했을 텐데, 여기서! 결론의 값을 (분모)(분자)에 곱해놓고!!! 시작해보세요
a_4 = cos pi/2^4 a_3 * (2^3 sin pi/2^4) /( 2^3 sin pi/2^4 )
우리를 이를 계산해서 1/(2^3 sin pi/2^4) 를 만들어내면 되니 얘만 뺀 나머지 식들만 계산해보세요!! 즉 분자만 계산해서 1로 만들면 되겠죠? ㅎㅎ
이런 내용의 경우에는 찾기 힘들 수 있는데, 그럴 때, 위 두 방향들로 진행해보는것도 염두에 두고 공부하자로 가면 될것 같습니다.
그런 문제의 경우 발상적인 측면이 살짝 있기 때문에, 이런 내용에 대해서 질문을 적극적으로 하면 좋답니다! "제가 이런 발상은 사실상 못 떠올릴거 같은데, 제가 할 수 있는 방향에는 어떤게 있을까요" ---->> 언제든지 그 길을 알려드릴게요 ㅎㅎ
매번 친절하게 답변해주셔서 정말 감사드려요 !
접근방향 막히면 또 질문 드리겠습니다ㅎㅎ 감사해요
눈나너무예뽀요♡♡♡♡
오늘도 잘 보고 갑니당
정장핏 예술입니다❤️
아주 좋습니다!!! ㅋㅋㅋㅋ
확통교재는 빨강입니다!ㅎㅎㅎ
꿀 같은 칼럼이 이번 달까지라는 게 아쉬울 따름입니다,,, 오늘도 좋은 칼럼 감사합니당
오늘도 열공중 입니다♡♡
슈트가 반짝반짝 내 눈은 깜짝깜짝!!
솔직히 선생님 글 올라올 때마다 제가 왜 이과가 아니고 문과인가를 생각하곤해요. 과학이 부담스러워서...차마..
안녕하세요.
이번주 일요일 수업 수강 신청하려고 하는데요.
수업 진도 어느 부분 나가는지 알수 있을까요?
학원에 전화하니 진도는 잘 모르시네요.
2step 진행중인건가요?
그리고 3step 실전모의고사는 언제부터인가요?
https://orbi.kr/00031130385 여기에서 진도를 확인할 수 있습니다!!
실전모의고사는 정규반 커리에서 하는 것이어서,
12주 특강에는 실전모의를 현강교재의 단원별로 2021 모의나, 2020수시를 넣어 같이 병행할 예정입니다!!
정규반 진도 궁금했던 거예요.
내일 어느 파트 수업하시는 지 알수 있을까요?
9가지 인가요?? ㄹㅇㄹㅇㄹㅇㅇㄹㄹㅇ로 궁금합니다 ㅎㅎㅎㅎㅎ
+red 수논사까지 10개 입니다 ㅎㅎㅎㅎ
오늘도 서지현수리논'술'에 취하고 갑니다
누나의 이쁨의 경우의 수를 구하시오
오늘도 알찬하루네요. 감사합니다.
책을 사고 싶은데요 질문하나만할게여!! 책 내부가 이 칼럼이랑 똑같나요??
칼럼은 책의 내용을 발췌해서 쓰는 것이랍니다! 책 내용은 비슷하게 간다고 보시면 되고, 확률과통계는 8월초에 판매될것 같아용 ㅎㅎ