표본의 분산 과 표본분산 은 다른 거 맞나요?
표본의 분산은 n으로 나눈 거
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘 외대앞역에서 내릴거임 저녁먹을거 ㅊㅊ좀
-
냥대 상경 3
낭대 상경 논술 혹시 답하나 틀려도 붙은 사례 있나여…? 답 도출과정에서 부호...
-
메리트가 거의 없지않나요 사탐2개 하는게 나을것같고 과탐필수 대학가고 싶으면 과탐2개 해야되지않나
-
부산대 논술 후기 48
1,2번 문제가 생각보다 쉬웠던거같음 1번은 보고 순간 당황했는데 노가다뜀 1-1...
-
냥대싱경 4
1. 64, 최솟값은 틀린듯 ㅅㅂ 2. 77/27 3. 13,2 파경 썼고 복학 각
-
현장에서 틀린이유: 막줄
-
오늘 한양대 논술 쳤는데 성대 앞에도 있던거같은 사람들 한양대 앞에도 있던데 뭐하는...
-
1번 최대: 130(x=8) 최소:-160(x=6) 2번 77/27 3번 최대:13...
-
경희대 외대 낮과 가능할까요? 건대 어문 면접 1차 붙었는데 가는게 맞나요?ㅜㅜㅜㅜ
-
어제부터 오늘 아침까지 확통 쎈발점 끝내느라 뒤지는 줄 알았는데공통에서만 나온 거...
-
한지지2 세지지2 지2를 지1로 바꿔도 비슷
-
정시할때 고1 수학이 큰 영향 안주겠죠? 고2 6모는 3떠요
-
차타고 가면서 13
잠자기 vs 애니보기
-
쉽지않네 조건 하나를 더 얹어주면 개허접문제될거같고 또 안주자니 결정이 안되네 어렵군
-
수학 하나 너무 절었다 ㅠ
-
이매진/인강민철 중에 하나 생각중인데 이 두개가 아니더라도 개인적으로 만족한 주간지...
-
영어 4등급 지원조차 못 하게 막을 가능성 없겠지?
-
최대 최소만 각각 구하는 문젠데 다 구해놓고 최대에서 최소 뺀 값을 적었으면 몇 점 감점인가요?
-
은 뭘까요? 전에 오르비에서 생윤화2 봤는데 그분 이길 실사례는 없을 것 같긴함..
-
좀 많이 유명해지는 것 같네요? 수능 전에도 입시 커뮤에서는 유명했지만 다른 곳까지...
-
딥피드 점령자들 5
-
냥논 상경 수리 8
1번 답 기억 안 남 최대가 64였나 최소는 f(6)에서 나왔던 것 같은데 2번...
-
더주지 ㅠㅠ 답을 못 썼도다 ㅠㅠ
-
뻥임뇨
-
알려주떼염
-
한양논 상경 7
수학 3문제 다 공통 ㄷㄷㄷㄷ
-
공부를 안하면 됩니다.
-
냥대 상경 0
아 다 풀었는데 ㅠㅠ 한문제는 식 한 줄이랑 답만 적으면 되는데 ㅠㅠ엉엉..
-
정확한 검사 1
정확한 검사는 민감도 특이도 같은 내적인 성질을 바꾸는 거고(AI가 이거 해...
-
심찬우 쌤, 김지석 쌤, 피램, 국정원, 기파급, 규토, 랑데뷰, 이동훈 기출 등...
-
대학가면 좋은점 10
벡터 내적<<<얘가 뭐하는 놈인지 알게됨 근데 내가 기벡을 거의 독학했어서 몰랐던 걸수도
-
과탐은 김준 사탐은 임정환 말고는 유명한 쌤이 거의 없는 것 같네요? 권용기t 한때...
-
낮공이면 어디까지 가능한지요
-
실제로 정병훈t 실시간 풀이에는 답만 적혀있다.
-
선거구 도표계산 문제는 한때 킬러, 만점방지용을 담당했지만 이제는 아니고 주 변별...
-
하… 0
면접준비 너무 하기싫다….
-
해외 밈의 세계는 모르겠구나
-
독서실가자 14
곤부해야지
-
수능 아쉬운 점 2
왜 24때 기하물2지2를 안했는가
-
어차피 정시원서쓰기전에 학교투어 한번씩 할건데 굳이 오늘 갈필욘 없을것같기도 하고..
-
과탐은 이거는 이렇고 저렇고 이래서 이거야 인데 사탐은 이 사람이 이렇게 말함,...
-
콘서타먹는분들 6
오늘 논술보러가는데 깜빡하고 안먹었어요… 조진건가요 갑자기 졸리는거보고 기억나서…...
-
매력적인 목소리...
-
점성술 마렵네요 0
타로점 봐볼까
-
사탐 개념중에 동위원소,PH,중화적정,기체추론,허블법칙,세차운동,반감기,엘니뇨 보다 어려운거 있음? 5
ㅇㅇ? 동사 세사 한지 세지 사문 중에
-
올해 수능까지 포함된거 12월 말 쯤 나오려나요?
-
연대 어문에서 한양대 전컴으로 옮기는거 어떻게 생각하시나요?? 이번에 삼반수했는데...
-
밍나 오하요 4
-
패스가 있어서 그냥 단어만 외울까 하다가 들어볼려는데 독해강좌 하나 듣는다면...
표본의 분산= 표본분산=표본내의 분산= n-1로 나눈 바로그거
n으로 나눈거= 모분산
표본평균의 분산은 표본분산과 다름.
표본의 분산 이 표본분산과 같은 말 인가요? 필기를 잘못한건가..
아 아니군요. 표본의 분산은 n으로 나눈게 맞고, n-1로 나눈게 표본분산이네요
많은 사람들이 오해하는 개념인데 "표본분산"은 "표본의 분산"이 아닙니다. 극단적으로 말하면 표본분산은 분산과는 전혀 관련이 없는 별개의 값일 뿐입니다.
이 n-1로 나눈 값에 "표본분산"이라는 헷갈리는 이름을 붙인 이유는, 이 이상한 값이 '모분산'을 추정하는 데에 쓰이는 올바른 값이라는 이유 밖에는 없습니다. 다시 말해서 "표본의 분산"은 모분산보다 평균적으로 (n-1)/n 배로 작은데, 그래서 표본의 분산에 n/(n-1)을 곱한 "표본분산"이라는 다른 이상한 양은 평균적으로 모분산이 됩니다.
PS1> 고등학교 과정에서는 항상 n이 아주 큰 경우만을 다루므로 "표본분산"과 "표본의 분산"이 별로 차이가 없게 되므로, "표본분산"="표본의 분산"이라고 편의상 하는 것이지만, 저 등호는 근사일 뿐이지 개념적으로는 전혀 다릅니다.
은 네이버 지식인 답변입니다.
요약하자면 모분산 계산하던대로 표본내에서 분산을 계산하면 '표본의 분산' 이 되고 n-1로 나누면 표본분산이 되네요.
윗분이 이미 잘 설명해주셨네요. 표본의 분산은 말 그대로, 표본에 있는 데이터들의 분산이고, 표본분산은 모분산을 추정하는데 쓰이는 값으로, 원래 분산에서 n으로 나누던 것 대신 n-1로 나눈 것이에요. 대략적인 이유는, n개의 데이터가 한쪽으로 몰리면, 이 데이터들의 평균도 같은 쪽으로 몰려서, 모평균을 기준으로 삼고 분산을 구할 때보다 분산이 작게 나오기 때문에, 이를 보정하기 위함입니다.
한 번 생각해보고 싶으시면, 모집단 데이터 1,2, ... , m 을 떠올려보시면 됩니다. 계산해보니 이 데이터들의 분산은 (m^2 -1) /12 인 것 같네요.
크기가 2인 표본 샘플 {a,b} (1<=a,b<=m)를 뽑아서 분산을 계산하면 (b-a)^2 / 4 입니다. (만약 n=2로 안 나누고 n-1=1로 나눈다면 분산이 (b-a)^2 / 2 입니다.)
1<=a,b<=m인 (a,b)의 쌍에 대해 위 분산의 평균을 구해보면 (m^2 -1)/24가 나옵니다. 'm대신 m-1로 나눈 분산'의 평균은 (m^2 -1)/12 입니다.
어떤 것이 원래 분산인 (m^2 -1)/12과 같은가요? 일반적인 데이터들에 대해서, k개를 뽑는 경우에도 더 일반적으로 (사실 간단하게) 확인이 가능합니다.