12수능 가형 21번 문제 도와주세요~~ 엄청 자세하게 질문드립니다 TㅁT
수리의 비밀에 예제로도 실려있는 문제인데요
흑흑 제가 이해력이 많이 부족해서 [삼각형 ABC를 포함하는 평면]과, [yz평면], [x-2y+2z=1]
이 세 평면이 하나의 일직선 상에서 만나도록 이동시키라는 게 어떻게 가능한건지 잘 모르겠어요 TㅁT 도와주세요
제가 이해한게 맞는건지 확인해주시면 진짜 힘이 날것같습니다 도와주세요
[yz평면], [x-2y+2z=1]이 두 평면은 이미 공간 상에서 위치가 확정된 건데
반면에 [삼각형 ABC를 포함하는 평면]은 위치가 확정된게 아니고 보기에서 주어진 조건을 만족하는 상태로 공간 상에 존재하는거자나요??
즉 세번째 사진의 상황처럼 있을 수도 있는거지만 4번째, 5번째 사진과 같은 상황도 가능한거 맞나요?
그런데 문제에서 구하는건 삼각형 ABC를 [x-2y+2z=1]에 내린 정사영의 '최댓값'을 구하는거니까 세번째 사진과 같은 상황이어야
[x-2y+2z=1]와 [삼각형 ABC를 포함하는 평면]이 이루는 각이 최소가 되고 우리가 구하는 값이 최대가 되기 때문에
세 평면이 일직선 상에서 만난다고 가정하고 푸는건가요??
TㅁT... 근데 세 평면이 일직선 상에 있지 않은 상황일 때가 답이 되는 상황인 문제가 나올 수도 있나요??
흑흑 도와주세요.. 제가 머리로 상상해내는걸 잘 못해서요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생활패턴 개조졌네 제정신 아닌채로 출근 뭐지다뇨
-
너의끝이궁금하구나
-
신해혁명 기념해서 공화국의 봄이라는 뜻으로 지었었대
-
시대에서 준 부엉이 인형 안고 시험쳤었음 놀랍게도 팩트라는거임 근데 그니까 점수 잘나오더라
-
번호를 내놔라 6
전화를 해주마
-
탑툰 보러감 6
-
이거 친구랑 친구여친이 같이 게시글 올린거 좋아요 눌렀는데 왜 친구여친 게시글에만...
-
큼 그러다가 현실에서 만나고 친해지면 그게 친구 아닌가싶음 어쩌다 친해졌냐고는 잘안물어보니까
-
오늘의 아침 3
불닭+공화춘 참치마요 삼김
-
ㅋㅋㅋㅋㅋㅋ
-
난 공용에서 코딱지 파먹는 사람 봄
-
3년간 내적 친밀감 ㅈㄴ쌓였는데 이렇게 가면...
-
대충 미즈키 짤
-
얼버기 4
ㅎㅇ
-
일단 살좀 빼야 도전가능할듯
-
정수기가 없다는 사실이 나를 미치게함 냉라면 못먹겠네 쿠지라이식 라면이나 먹어야겠다...
-
자려고 누웠는데 잠이 안와서 가장 기억에 남는 글이랑 혜윰님 댓글 달린글 빼고 다...
-
고로 매우 마초적인 행위라고 할 수 있음
-
오늘부터 제 제1 모토는 서로 사랑하며 살자 입니다
-
객관적으론 진짜 개빡센 문제일텐데 또 굇수가 오셔서 20초컷 하실 거 같음..
-
나도 웃어서 뭐라 못하겠다 그니까 복면강도 컨셉 ㅇㅈ이나 보고가셈
-
제가 프세카에서 좋아하는 친구인데 얘랑 키 똑같다면서 플러팅 먼저 했잖아요 빨리 해줘요 급함
-
본계정에 여자 비키니사진 좋아요 수만개는 눌러둔거같은데 이거 언제지우냐 대학 가기전까지 지워야하는데
-
없으면 빛삭
-
과시는 결핍이다 5
과시하는 사람은 보통 어딘가에서 결핍이나 열등감을 느끼는 경우가 많았던 거 같음. 아님 말고
-
옛날엔 오르비좃목 -> 옯스타,오픈채팅 -> 실제만남 많앗는데
-
와 저건 진짜 심하다
-
타비비토노요오니 0
우타카라우타에
-
X카스 같은 매력이 있는듯 인증을 볼때마다 아 괜히봤네; 싶지만 쉽게 끊지 못하는...
-
강아지 잔다 3
기여워요
-
돈으로 환전 가능함?
-
내년에같이컨설팅팀차릴분 19
70만원은 너무 비싸니깐 40~50정도로 가격으로 경쟁력을 가져가는거임 거기에다...
-
와
-
방금 시대갤에서 보고 생각난건데 현장에서 1번 보고 너무 대놓고 맞는말만 해서...
-
오늘만큼은 goat인거야
-
실검 1위 찍고 갑니다 10
ㅂㅇ
-
진짜 조심해야하는건 허언증보다는 나르임 허언증은 그냥 정신이 미성숙하고 귀여운거임...
-
진짜 라이트하고 건전하게 하는중임
-
빼는 건 그저 그런데 빼고 나서 구멍생기는 게 비호임
-
4합 3 이내를 이렇게 맞추는거였구나
-
왜메인두개갔지 0
-
이참에 딴 사진도 올림 13
임마들은 얼굴안나와서 안지움 우하하
-
이말만 몇번째냐.. 자고 일어나면 밤까진 안들어오는걸 목표로 할게요 응..
-
과잠 꼭 입어보고 싶은데 찾아보니까 1학년은 과잠이 없고 2학년 전공선택때...
-
그냥 간단하게 답변함
-
심심해요
-
스터딘 마크2 신가
-
ㅈㄱㄴ
-
고닥교 친구중에 이재명닮은 애 있었는데 맨날 찢재명이라 놀리다가 크게 혼남
수리의 비밀에 나와 있듯이
삼각형이 있는 평면이 결정된 게 아니기때문에
적당히 평행이동시켜서 한 직선에서 만날 수 있다고
생각하는거죠
아 근데 모형귀엽네요 ㅋㅋ
한석원쌤 해설 함들어보세요
글쓴분 왠지 공부 잘하실거 같네요 모형 ㄷㄷ....
쓰신대로 생각하셔도 되고 좀더 간단히 풀면
어차피 삼각형 넓이는 확정되어 있고, 변수는 평면들끼리 이루는 각뿐이죠. 따라서 법선벡터만 그려서 법선벡터들끼리 이루는 각만 생각해보시면 편합니다.
맞아요 마주보고 섯을때가 최소임당
저 문제는 복잡하게 생각하면 정말 복잡해집니다. 단순하게 생각해야해요.
평면은 법선벡터 그 자체로 생각해도 과언이 아닙니다.
법선벡터는 결국 이면각을 알아내는 아주 중요한 수단이 되죠.
이면각은 결국 정사영의 각도에 바로 적용!
yz 의 법벡을 n_1, x-2y+2z=1 의 법벡을 n_2 라 하고, 평면 ABC 의 법벡은 n 이라고 합시다.
일단 "고정된 법벡" 인 n_1 과 n_2 를 시점이 일치하게 찎찎 긋자구요.
그리고 문제 조건으로 n 과 n_1 사이의 각도는 알아낼 수 있겠죠?
근데 우리가 더 생각해야할 점은, 이 벡터들을 사실 평면에 있는 것처럼 표시했지만 실제로는 모두 공간상의 벡터들이란말이죠.
따라서 n은 n_1 과 어떤 일정한 각을 이루면서 n_1 을 휘휘도는, 마치 "n 이 원뿔의 모선인양 n_1 을 휘휘 도는겁니다."
그렇다면, n_1 을 휘휘 돌면서 n_2 가 이루는 각이 최소가 될 때는 바로, n, n_1, n_2 이 모두 같은 평면에 있을 때인 것입니다.
이제 더 설명 안해도 쉽게 풀리실겁니다.
이님 풀이가 최적입니다.. 요즘 법선벡터.가 이루는각 많이 물어보네요..9월도그렇고
답변해주신 분들 정말 다 고맙습니다 가려웠던데 시원하게 긁은 느낌이에요ㅋㅋ 이힝유홍님 특히 감사합니다 정확하게 이해됐어요 XD !!!
지나가다 도저히 댓글 안달고는 못 배길거 같아서댓글 남깁니다.. 사실 댓글 다신 분들 말씀처럼 그렇게 머릿속에 그려서 직관적으로 이해해도 답은 맞출 수 있을거에요.. 근데 이 문제가 객관식 마지막 문제였다는 점과 여태껏 평가원 공간도형 문제에서 이 정도의 고난도 상상력을 요구하는 문제는없었다는 점과(실제 이 문제 처음 접한상태에서 풀어보신 분은 어느정도 비약적 사고는 가능할지 몰라도 이렇게 평면을 돌려가며 생각하긴 힘드시단걸 알거에요) 특히 평가원이 수능 후 발표한 자료집에서 이 문제의 출제의도는 법선벡터의 성질이였음을 감안하면 이 풀이는 평가원이 의도한게 아니란 생각이 드네요...
제가 말하는 다른 풀이는 일단 삼각형이 있는 평면의 yz로의 정사영이 넓이로 나오기때문에 구하는 평면의 법선벡터에서 성분x는 0이 될 수 없으므로 법선벡터는 (1,a,b)로 둘 수 있고.. 이걸로 주어진 조건을 식으로 나타내보면 두 가지가 나오는데 (a,b)의 자취는 원이 나오고 이 중에서 정사영의 최소는 b=ma+n 꼴의 식으로 나올겁니다 그럼 예전에 한창 평가원에서 자주 낸 테크닉인 원 자취에서 만족하는 직방의 최대최소(접할때).. 뭔지 아시겠죠? 그렇게 풀어보시면 답이 나옵니다.
자세히 설명 못드려서 죄송하구요 정말 제 개인적인 생각으로 저 풀이가 출제의도라고는 도무지 생각이 안되서 글 남기고 가네요..
이문제는 엄밀하게 풀려면 반드시 법선벡터를 활용한 수식적인 풀이를 이용해야 해요 절대 직관적으로 평면화 과정을 통해선 해결이 안되요