[가형] 함수 문제( + 보너스) 투척
처음에 글 읽어보신분들 죄송합니다 ㅠ
좀전에 올린 문제는 .. 문제 풀어보시던 분의 질문으로 ... 답이 2개 나올 수가 있다는 게 밝혀졌음요.. 죄송합니다 ㅠㅠ
다른 문제로 대체하고, 아까 그 문제는 수정작업 들어갑니다 !!
34번 문제는 .. 난이도가 낮네요 ㅎㅎ
그리고 보너스 문제 !!!
19번 문제는 .. 문제가 ..단서를 너무 뻔하게 주는 문제라서 그냥 안올릴랬는데
어제 올려드렸던 문제와 연관지어서 생각해보시면 좋을 것 같아서 올려요 ^^
풀이법은 다르지만, 결국 두 문제 모두 XXXX 을/를 이용한 문제거든요 ㅎㅎ
XXXX가 뭘까요 ??!!!ㅋㅋㅋ
(아, 19번은 4점이라고 적혀있지만 ㅋㅋㅋ 3점 난이도에요 ㅋㅋ)
무튼, 오늘도 수리수리한 밤 보내자구여 ㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 지문 완벽하게 이해했다 기준이 뭐라 생각하심? 0
제목이 곧 내용
-
도표는 걱정하지마십쇼 넵
-
다이어트 시작함 4
살빼면 예전의 얼굴을 되찾을수있을까 나름 아동복모델도 했었는데..
-
남들은 안읽씹 잘하던데 난 성격 상 진짜 못하겠음 내가 지는거같네.. ㅠㅡㅠ
-
우왓
-
가끔씩 먹어야지
-
잘자요 2
굿 나잇
-
ㅇㅇ
-
"화작" "기하" "미응시" "일자찍기" "경제" "화2" 하고 수능샤프 받아와야지
-
뭐지 원래 안 이랬는데
-
그것은 나카노 니노였구요~~
-
다시 붙여서 인식하나요
-
최저 다 맞추긴했는데 애초에 수리논술 남들 다 쓰길래 떠밀려서 쓴것도 있고 준비...
-
취중질닥ㄱㄱ 선넘질받도괜찮아 사랑하
-
같은 과라는 가정하에 ㅇㅇ
-
엑셀로 표본분석해서 앞에 추합 제외하고 이런식으로 해서 4칸 붙는 분들 많나요?사실...
-
내신 bb 기준
-
유빈아카이브 한번도안씀
-
사탐 과목 추천 1
과외생 중에 내년 수능 사탐런 한다는 학생이 있는데 어떤 과목을 추천하시나요? 이...
-
3개월 공부 국어 수학 사탐(경제,정법) 이렇게 3과목만 3개월 팠고, 2년 만에...
-
고고!
-
ㅠㅠㅠ 속상하네요
-
둘 다 합격하면 어디 가세요?
-
드뎌 왔다!!
-
ㅇㅈ?
-
멀수록좋음
-
수과탐 만점급인데 국어 3 4 받는사람(이런애가 있나 근데)
-
안녕하세요 저는 현재 **교육적 게임 활용에 대한 예비 초등 교사의 인식과...
-
확통도 문제 많이 풀어봐야하나 교사경 해야겠네
-
확통27,28,29,30 다맞기 저 올수65인데 뭐가 더 가능성있을까요. . . ㅠ
-
나가기 귀찮아서 집에 있는 참치나 까먹을까 하는데 걍 얘랑 콜라만 있어도 맛있나요
-
다 등급컷 딱 걸침.. 언매확통정법사문임 진짜 우울하다 진짜 받아본적도 없는 등급이...
-
배 아프면 대장암인가 머리 아프면 뇌종양 뇌졸중인가 근육 튀면 루게릭병인가 명치...
-
사문 44가 진짜 얼마 없는거임 정답률 상위가 거의 2점짜리거든 그래서 45랑 같이...
-
이거 opgg에 판마다 불운 불운 불운 되어있으면 내잘못은 아닌데 5
왜 못이기지
-
성적표 그 자리에서 찢어서 버리고 기차타고 한강갈 예정
-
설수의 컷 얼마로 잡는지 알려주시면 감사하겠습니다...
-
미적 개념 강의 1
예비고3 기말 끝나고 방학까지 한 2주 좀 넘게 시간이 남아서 미적 개념한번 돌리고...
-
언매 1컷이 91이라는 놈이 나 미적이 84라는 놈이 나 ㅋㅋ 12
그 놈이 나 제발
-
인기 공대는 불가능임 전전, 컴과, 화공 등등 인기학과는 서류에서 문과 다 떨어짐...
-
학원마스시작함 0
진엔딩보고 움 ㄹㅈㄷ
-
과대평가된 과자 원탑 11
밀가루에 소금뿌린맛 이거 왜먹음..?
-
저는
-
앗 부끄러워! 0
-
배달시켜 먹고 남은 코카콜라 1.25L와 곁들일 과자 추천 받아요. 1500원 이하였으면 함
-
군수생 달린다 3
정병호와 연등 달린다
-
알림 오는 기능 없나 흠..
31번문제 f(x)=-(x-파이)3+파이 로 잡고 만드신건가여?
왜 바로이게 생각나는거징ㅋㅋㅋ
응 ?? 적어주신 식 1차식 아닌가여 ?? 내 눈이 이상한가 ... 주어진 단서로는 절대 1차식이 나올 수가 없는데 ;;;
3 세제곱이에여 ㅋㅋ
음 ... 아쉽게도 아닙니다 ㅠㅠ
적어주신 식은 31번 문제의 조건을 만족하지 못해여 .. 다시한 번 잘 봐주세요 ㅎㅎ
만족하지않나여?ㅠㅠ.. 만족하는거같은뎅
도함수 파이에 대칭이구 (0.2파이) (2파이.0) 지나느뎅
그 다음에 나오는 조건을 봐주셔야해요 ^ ^ f(x) 와 f(x)의 역함수가
직선 x=y 위가 아닌 점에서 만난다 !! 이게 무슨 의미 일까요??
저식이면 (0.2파이) 랑 (2파이,0)에서
두개만나서 역함수랑 x=y빼고 교점2개있어요
아 !!! 앞에 - 가 있었네여 ..
죄송합니다 .... 이렇게 하면 보기에 있는 문제를 푸는 게 크게 의미가 없어지네요 .. ㅠㅠ 지적 감사합니다
일단 이 문제 빼고, 다른 걸로 넣어놀게요
31번 문제는 수정 후 다음에 올리겠습니다 ㅠㅠ
헐 제가더죄송해요 ㅠㅠ
문제보자마자
9평이랑 스크랩되면서 저식이 떠올라버렸어요 ㅠㅠ
아니에여 ㅠㅠ 좀 더 꼼꼼하게 검토했어야 하는데 ㅠㅠㅠ 흐규흐규ㅠ
부끄럽네여 ;;
저 왔어요~~~히히 오늘 빨리 하고 잘게요 요즘 빨리 자는 연습 해야 할 것 같아요 히히
웅웅 ㅋㅋㅋ 나도 일찍 자려고 일찍 올렸엉 헤헷
시험은 잘 쳤나 모르겠다 .. 잘쳤다면 당연 그게 니 실력이고, 못쳤으면 사설모의고사는 걍 맘에 담아두지말고 ㅋㅋㅋㅋ 아 너무 모순인가 .. ㅋㅋ
쪽지 확인좀 ..ㅠㅠㅣ히히
이미 따뜻한 문제들이.. 감사감사ㅎㅎ
뭔가 어질어질..ㅎㅎ ㄱ은 도함수f' 도 f와 마찬가지로 0
어제 제가 완전 미쳤었나봐요 어젠 정말 엉망진창이었네요ㅋㅋㅋ 우변 마지막 항에 t 빠져 있었던 거 맞습니다 ㅠㅠ 수정햇구요
평균값 정리의 또다른 표현 법 알아보는지 물어보는 문항이었구요 .. 감사합니다 ....
ㅠㅠ
히융히융님이 내신 문제 정주행 중인 1人 입니당~
ㄷ 선지에서 f ' (a) f '' (a) >0 라고 주어진 조건으로 부터 어떤 단서를 뽑아야할지 잘 안잡혀서 질문드립니다~
우와 정주행중이신 분 !! 감사합니다 ^ ^
f '(x)는 주어진 범위에서 항상 양수임을 아실 수 있을 거에요 ^ ^
그럼 f '' (x) 가 양수가 되는 지점을 생각하시면 되는데,
이계도함수가 양수인 지점은 아래로 볼록인 모양이져 ?? 그러면 a가 존재 가능한 영역에서 그래프의 대략적인 모양을 아실 수 있어요
증가하는 아래볼록 모양이져
그럼 원점에서 (a, f(a) ) 까지 정적분 값은 원점, (a, f(a)) 와 (a, 0) 를 이은 삼각형의 넓이보다 작겠져 ??
따라서 ㄷ번은 틀린 설명입니다 ^ ^
아..ㅋ 이런;; 답변보고 한참 댓글을 못달았네요 ^^ 정말 문제 잘 만드시네요~
곧곧에 질문 좀 드릴게요^<^ 수학 입문자니 업어주세요~~
34번은 ㄱ인거같고 19번은 10인거같네요
19번 정사면체로 푸는거같은데 ㅋ
문제에서 꼬인위치에수직,공통수선 보니까
바로 정사면체 떠오르더라고요 ㅋㅋ
좋은문제 감사합니당~
오오 맞아여 !! ㅎㅎ 바로 이전 문제와 한통속(?) 이져 ㅋㅋ
34번에 세타가 실수라고 했는데 저 식이 평균값의 정리를 의미하려는 식이라면 0<세타<1 이어야해요 a