빡모2권1회나형 문제 2개만 풀어주세요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
車서 흉기 찔린 50대 부부 미스터리…'음소거' 블박에 미궁 빠졌다 1
50대 부부가 흉기에 찔린 상태로 차 안에서 발견된 사건의 전말을 확인하기 위해...
-
약대 다니는데 의대로 이사 가능인가요
-
외국인이든 내국인이든 아저씨든 할아버지든 할머니든 나한테 뭐 엄청 물어봄 ex)...
-
오르비에 오늘 글 안올라오면 수술받다 죽은거임
-
방금찍음 3
눈많이옴
-
저는 남페미입니다..
-
왜안오는데
-
대구로 출발 10
눈과함께
-
어제 못본 이번분기 애니 보러간적있지아늠? 저는 수업중에 갑자기 생각나서 손들고 나감
-
수도권 사람들 개부럽네 눈도 다 보구말이야
-
할거없어서 심심
-
예쁨
-
현역이야 뭐 어쩔 수 없지만,,, 용산에서 현행대로 밀면 의머 뽑는 인원이 팍...
-
안녕하세요 오르비 수학강사 이대은입니다. 2025학년도 수능이 끝나고 첫 글인 것...
-
미적할게요?진짜?안말려요?야발점수강신청합니다?????말리지마세요아니말려주세요 ㅅㅂ..
-
언제그쳐 미친거같음뇨
-
분명 아까 아파트 지붕에 눈이 좀 쌓여있었던 거 같은데 2
정신차려보니까 어느새 다 녹아있음... 이런 저주받은 동네를 봤나
-
눈사람이 마치 찢으실거같이 생겼는데
-
현역 대학라인 1
현실적으로 어디라인까지 찔러볼 수 있을까요?
-
패딩 1
다들 뭐입으세여? 롱패딩 말고 진짜 개개개개개ㅐ개개개ㅐㅐ 따뜻한 패딩 추천해주세요
-
이 정도 성적이면 경희대설캠 인문+국캠 어문 가능한거맞나요? 경희대 반영비가 국어...
-
대설경보는 뭐야 9
XXX
-
소신발언 0
사문1컷 45 안되거나 되더라도 9평마냥 2나 다름없는 1일 가능성이 높아보임요...
-
대 3
머리 you
-
장이 활발해진 것 같음 삶의 만족도 증가
-
1. 올해 수능을 잘봤거나 2. 이미 수시로 붙었거나 3. 메디컬 학생이거나 4....
-
군대 체질인가 11
말년 되니까 너무 슬픔.. 전문하사를 했어야했나 후임들은 쥐어박고 싶었지만...
-
이거 가능한건가요?.........
-
전학교에서이맘때 4
노트북으로 진학사켜놓고 패드로 소드아트온라인 정주행했음
-
누구랑 결혼할래 후자는 연예인급존예 성격은 다착함
-
솔직히 고백함 3
대놓고 본건 아니고 밥 굶고 혼자 애니 봄,,,,,,,,,,
-
애니안보는 전 일반인이라 대화에 못끼겠네요 ㅠㅅㅠ
-
이유도 적어주세요~
-
아니면서 말을 진짜 입에서 나오는대로 막 하시네 여자는 애 낳으면 대부분 경력...
-
탸캬캬
-
학교는 물론이고 작년에 학원에서도 자리에앉아서 애니봤는데 이거 대호감아닌가?
-
디지겠더 ㅅㅂ
-
눈꽃 세상이다 2
이뿌당
-
정병훈T n제 2
정병훈T 계약종료라길래 강의 내려가기 전에 교재 구입 좀 해보려는데 n제 중에서...
-
아직 붙은건 아니지만 어디가 좋울까요 일단 전 서울사는데 대기업보다는 공기업을 좀...
-
똥싸는중
-
작수 4등급 백분위61이엇는데 올해 화작1틀로 97점 받앗는데.. 나중에 국어과외...
-
안주 탕 종류 하나랑 소주 2병 시키고 3시간 동안 노래만 부름ㅋㅋㅋㅋ 그 와중에...
-
메가패스 사야함,대성사야함??
-
이번수능이후로세번째임
-
얼버기 4
-
수능 몇번 치고 사교육 전향하는 사람 꽤 많음 ㄹㅇ
-
국어국어국어 0
작년강의들을까요? 내년강의 들을까요? 비독원 & 문개정 들을 예정입니다
-
오늘 동한 떳는데 불합격이면 최저못맞췃으면 무조건 떨어지는거인가요 아니면...
-
국어:73 수학:65-66 영어:4 동사:1 세계사:1 한국사:1 삼반수 했는데...
행렬은 왠지 지난 번에도 누군가 올렸던 거 같은..
ㄱ. XY=E 라 합시다. (A^-1 X B^-1 ) (BYA) = A^-1 X Y A = A^-1 A = E 이므로, BYA가 역행렬. 따라서 존재.
ㄴ. 좌 = A^-1 (A+B) B^-1 = (E + A^-1 B) B^-1 = B^-1 +A^-1. 마찬가지로 우변 계산해보면 동일함.
ㄷ. ㄱ에 X=A+B 대입해보면 참임을 알 수 있음. ㄱ,ㄴ,ㄷ 모두 참.
아래문제.
ㄱ. (미분가능함수인) g(x)는 그 도함수인 f(x)값이 0이면서 + -> -로 변하는 곳에서 극대. 문제의 f(x)그래프로부터 g(x)가 x=1에서 극대임을 알 수 있음.
ㄴ. f의 그래프에서 x절편(1,0)을 A, y절편을 B라 하고, (1, f(0))을 점C라 할게요.
g(1)은 그림에서 0~1까지 그래프f(x) 아래쪽(x축 위쪽)에 있는 영역의 넓이이므로
삼각형OAB넓이보다는 크고, 직사각형OACB넓이보다는 작음.
삼각형OAB넓이=f(0)*1/2, 직사각형OACB넓이=f(0)*1. 따라서 참.
ㄷ. 분명 f(x) g(x) < f(0)x (x=0제외)
이 식의 양변을 다시 x에 대해 적분하면 (0,1)에서 적분 g(x) dx < (0,1)에서 적분 f(0) x dx = f(0)/2. 따라서 참. ㄱ,ㄴ,ㄷ 모두 참.
아래문제 ㄷ번풀이는 직접 생각해내신거에요??
행렬문제 ㄷ번 잘 이해가 안가요....
넵.. 혹시 답에도 똑같이 있나요? 왠지 그럴 가능성도 클 거 같고요..ㅎㅎ
위에 ㄷ은 ㄱ이용하면 되는데, ㄱ에다가 X=A+B대입하면
A+B의 역행렬이 존재하면, A^-1 (A+B) B^-1 의 역행렬도 존재! 라는 명제를 얻습니다. 그런데 A^-1 (A+B) B^-1 = (E+ A^-1 B) B^-1= B^-1 +A^-1이니까, B^-1 + A^-1 의 역행렬도 존재한다는 것과 동치이지요. 그래서 ㄷ참이고요.
위에문제 엄청간단하게풀어드림
ㄱ은 세행렬 각각역행렬존재하므로참
ㄴ은 전개해보면 참
ㄷ은 ㄴ을이용 일단 좌변 전개하면 A역+B역 이나옴(폰이라서양해좀요)
ㄷ의전제때문에 우변이 역행렬존재함을알수있음 그러므로 ㄷ도참
감사합니다...이해됐어요!
아래문제 ㄴ은... 도형의 넓이 비교로 생각해주세요
1/2f(0)은 높이f(0), 밑변 1인 삼각형의 넓이
g(1)은 (0,1)범위에서의 f(x)의 적분값
f(0)은 높이 f(0),밑변1인 사각형의넓이
주어진 그림에 직접 그려보시면 이해가 빠르실거예요
ㄷ은... g(x)의 그래프를 이용해서 ㄴ과 비슷한 식으로
1/2f(0)은...
g(x)에서 x에 접하는 직선의방정식을 그리구요 y=f(0)x 이런식으로 나올겁니다
저 방정식은(1.f(0)) 을 지나겠죠?
밑변1, 높이f(0)인 삼각형의넓이가 바로 1/2f(0)이네요...
그러니 왼쪽에 주어진 적분값과 그 삼각형의 넓이를 비교해보시면 되요
기출에서 봤던 논리 같은데 찾아보려하니 어디에 있는지 못찾겠네요 ㅎㅎ;;;
2009년이엇던거 같아요. 감사합니다