고대 수리논술 2012모의
고대 2012 모의논술 에서 나온 수리논술 문제 있잖아요
답은 ''답이 없다'' 가 나와서 출제오류라던데
제대로 풀으려면 분자와 분모를 바꿔서 해봐야 된다는데
그러면 n x ( 2030 / 2031 )의 n승 으로 풀어야되는거죠?
이거 풀이법 아시는분?ㅠㅠ 저 식이 최대가 되는 n의 값을 구하는거예요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기차 지나간당 0
부지런행
-
CG가 풀려버린 버튜버 속옷만 입고방송했네 ㅋㅋㅋ...
-
얼버기 9
-
진짜 잠 3
ㅂㅂ
-
날 붙여다오..
-
내년 목표 3
1. 재수 성공 2. 개명 성공 3. 캐논락 완주 성공 4. 오르비 끊기
-
근데 아싸랑 아싸는 서로 집밖으로 안나가서 만날일이 없다는거임
-
ㄹㅇ 잘 시기를 놓쳐서 지금 머리 겁나 아픔 ㅇㅇㅇㅇㅇㅇ
-
무물받음뇨 2
잠이 안옴뇨
-
체감이 안되네 내가 남들 글을 신경 안써서 그런건가
-
이게 여시회원 80만명의 힘인가 난 지금까지 여초화력을 이기는걸 거의 본적이 없음
-
가/나, A/B 중복은 풀면서 가, B 기준으로 나, A에서 중복된 거 지우지 뭐 빠진 거 없죠??
-
34444 언미생지 생명은 높4뜰것같아요ㅜ 문이과 상관없이 인천경기권에서라도 불가능할까요?ㅠㅠ
-
3시간동안유튜브만봣네
-
다들여자어디서만난 13
네
-
머리 멀루하지 1
수능 끝난지가 언젠데 아직도 고민중 머리 어지간히 길어서 웬만한건 다될듯여 추전좀 부탁드려요
-
주말엔 한국어가 잘 안들림
-
유루캠좋다 3
잔잔한게 또 느낌이있거든요
-
아 우리 민석이가 그렇다고 하면야 바로 세체탑 도란이다 아 진짜 어쩔수가 없네 근데...
-
대형특수 50점 출결 7점 가산점 13점 전공학과 20점인데 계산상 90점 나오는데...
-
가 세상이 아침부터 움직이니까 그런거임?
-
69페이지정도 되네.. 다 이해하고 어느정도 암기하면서 썼으니 하루이틀 안에 외울수 있겠지
-
현재 돌아갈 전적대 있는 상황 + 올해 수능으로 적어도 옆구르기 가능일 듯 한데...
-
정해진 시간 되면 핸드폰 못 키게 만드는 뭐 그런 거 없나요 4
1시 전에 자려했는데 말도 안 됨...
-
이거 다 외우면 1등급 나오겠지
-
성적표뜨고 좀 나중에 받나요 접수직전에
-
진짜 건실하게 산다
-
자러가야겠다 3
힘들어요...
-
가채점을 안해서 먼가 끼기가 불편함
-
진짜 잠 5
보이면 차단 박아주셈
-
딱빰 마렵네
-
세지 vs 한지 1
뭐가 더 나을까요 사문이랑 같이 할거임
-
하도 쳐맞다보니까 수능장 문제 볼때 마음이 편했음
-
서버 점검하네ㅋㅋ
-
심심해서 유튭 인스타 보다 질리니까 오르비 보는데 글리젠이 없네.... 다들 수능...
-
ㅇㅈ 1
오늘만 몇번째냐
-
펑임뇨
-
난 수능 끝난 n수생이 아니라 대학생이었음
-
22 예과1학년이니까 22,23 놀고 24본1 빡세게 공부하고 좀 감 잡을꺼아님...
-
빈집털이 하셈 난 안 할 거임
-
오르비에 처음 글 써봅니다 먼저 저는 일단 수시 거의 붙은 것 같아서 반수 준비중인...
-
스펙 평가좀 12
어떰뇨
-
ㅅㅂ질렀다 8
Team기하& Team07 ㄹㅊㄱ~!
-
국어 화작 2(낮) 수학 미적 88 -1 영어 2 생1 50 -1 지1 45 - 1...
-
일반물리학 질문 1
만약 초기 높이와 최종높이가 같은 지표면에서 연직 위로 포물선 운동을 한다고 하면...
-
안아주세요 12
안아주떼욤
-
약값만 46억원…희소병 딸 살리러 국토대장정 나선 목사 아빠 4
[뉴스리뷰] [앵커] 근육이 점점 약해지는 희소병에 걸린 딸아이를 위해 국토대장정에...
-
화1은 인정하거든요 저희 학교 화학쌤도 1은 하지 말라하시고물1은 왜 그런걸까요...
-
졍체가뭐야
고대 입학처 자료실에서 기출문제란 가시면 자료집 있어요
http://oku.korea.ac.kr/admissions/attach/attach.oku?stm=download&attach_idx=3ee282f2-25dc-4b6b-932b-c8b814519247&attach_seq=786&a=Y
n 대신 x라고 놓고(x 양의 실수) f(x) = x c^x 의 최댓값? 최솟값? 구하는 문제 말씀하시는건가요? (단 c = 2030/2031 <1)
f ' = c^x (1 +x ln c) 이니까, x = - 1 / ln c 일 때 최대이겠군요. (좌우에서 f' 의 부호 생각해보면 좌측에서 +, 우측에서 -
즉, n값이 -1/ ln (2030/2031) = 1/ln (2031/2030) 에 가까운 두 자연수 중 하나일 떄 최대가 되겠네요.
참고로 ln (2031/2030) = ln (1 + 1/2030) 이고, x/(x+1) < ln (1+x) < x 임을 이용하면
1/2031 < ln (1 + 1/2030) < 1/2030 이니까 위 값은 2030과 2031사이의 실수이고, 따라서 n=2030 or 2031일 때 최대가 될거에요.
x/(x+1) < ln (1+x) < x의 증명은 (단,x>0 일 때)
g(x) = x - 1/ln(1+x) 및 h(x) = ln (1+x) - x/(x+1)라 두시고 미분하시면 됩니다.