고대 수리논술 2012모의
고대 2012 모의논술 에서 나온 수리논술 문제 있잖아요
답은 ''답이 없다'' 가 나와서 출제오류라던데
제대로 풀으려면 분자와 분모를 바꿔서 해봐야 된다는데
그러면 n x ( 2030 / 2031 )의 n승 으로 풀어야되는거죠?
이거 풀이법 아시는분?ㅠㅠ 저 식이 최대가 되는 n의 값을 구하는거예요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일반 PN접합 다이오드도 순방향 바이어스 걸렸을 때 LED처럼 자유전자의 에너지가 낮아지나요?
-
ㅈㄱㄴ
-
설대 인문ㄱㄴ? 7
오직 '인문' +내신 일반고 3.5 3.5 6.9 정도인데 cc뜨나요?
-
소신 발언) 노잼임
-
“수업 안 나오면 결석처리됩니다“ —> 이게 어케 협박임 ㅋㅋ 시위할 거면 결석...
-
ㅠ
-
그냥 학교생활 하고 중간 기말때 시험 공부하고 나머지에 수능 준비 하는 거임..?
-
되려나요
-
팀플 재밌긴 한데 힘들다 ... ㅋㅋ
-
고2 자퇴생이고 내신때 어느정도 했어도 이제 다 까먹었을거라 노베랑 다름없는데 일단...
-
고속 표점 입력 3
고속에서 원점수 입력해서 나온 표점과 메가에서 나온 표점이 상당히 차이가 잇는데...
-
생1 아주 오래전 내신에서만 해보고 아예 해본적이 없는데 이번 수능에서는 화1이랑...
-
문제집 정리된 것 풀어본 후에 수분감으로 추가학습할 예정입니다. 기출문제집 한온기랑...
-
수능 보느라 3년은빨리 늙은듯 스트레스로
-
3모 깔끔하게 만점받고 입시흐름 타봅시다!
-
그냥 물리할란다
-
위에꺼는 텔그 기준이고, 진학사는 처음엔 3칸이었는데 지금은 6칸이고 실제 지원자...
-
수학을 못보면 원래 다 불리하다뜨나요 진짜 개너무하네 ㅡ..ㅡ
-
학교 동기들이나 친구, 동생들이 의대장기휴학하니까 군대가려고방향을틀더니 많이...
-
국어 커리 추천 1
11모 1컷 / 25수능 화작 86 고1 겨울방학에 강기본 완강하고 고2 여름방학에...
-
어느 쪽이 더 잘 맞췄나? 파란색으로 칠한 것이 실제 등급컷과 유사하게 예측한...
-
언제쯤 오르비식 노베가 될까
-
다음주부터 심찬우 잡도해 들어갈 예정.
-
과외돌이는 친구 동생 (고1) 원래 알던 동생이라 마음은 좀 편했음 시험범위가...
-
컨설팅 필요 없움?
-
구마유시한테는 음료수 몸에 안좋다고 물이라는 좋은 음료 어쩌고 저쩌고 해놓고...
-
서연고서성한중에 하나는 역대급 핵빵꾸 날거같음
-
ㄱㄱㄱ
-
자연계는 있는데 인문계열은 안보이네요 ㅠ
-
ㅇㅇ
-
04년생 댓이나 쪽지좀 사반수 +1 무휴반 생각있음? 뜰거임? 어떡할거임
-
150분을 갇혀있었어
-
S대 내가 간다 1
성균관대.
-
혼자 가사 쓰고 노래 부르던 아파트의 침대는 생각보다 더따뜻해서 1
쵸파모자쓰고노래부르던놈받아초코파이500개이런가사밖에못써
-
처음엔 시간 재고 풀고 두 번째 풀 땐 시간 무제한으로 두고 풀기 이렇게 하면...
-
역대 15번 귀납 기출들이랑 비교하면 난이도 어떰? 비슷하다고 생각함?
-
조폭임?
-
줄어들거나 아예 안뽑으면 어쩌지
-
물화생은 1컷 거의 고정된 거 같고, 지구의 경우만 더 오를 거다 이런 추측이 많아...
-
존내 잘쓴거 같은데 다른 커뮤도 얘기 없고 나도 소통하고 싶다고오
-
18명 모집에 1500명 ㅋㅋㅋ
-
한명당 오천덕에서 만덕씩 주는데 다들 저한테 잘보이도록 하세요
-
은테까지 11명 3
맞팔 구해요
-
지금 분위기가 그래보이는데...
-
작년에 비해 되게 어려웠던거 같은데 몇점 정도해야 합격할거같은가요...
-
파급력 GOAT시네
고대 입학처 자료실에서 기출문제란 가시면 자료집 있어요
http://oku.korea.ac.kr/admissions/attach/attach.oku?stm=download&attach_idx=3ee282f2-25dc-4b6b-932b-c8b814519247&attach_seq=786&a=Y
n 대신 x라고 놓고(x 양의 실수) f(x) = x c^x 의 최댓값? 최솟값? 구하는 문제 말씀하시는건가요? (단 c = 2030/2031 <1)
f ' = c^x (1 +x ln c) 이니까, x = - 1 / ln c 일 때 최대이겠군요. (좌우에서 f' 의 부호 생각해보면 좌측에서 +, 우측에서 -
즉, n값이 -1/ ln (2030/2031) = 1/ln (2031/2030) 에 가까운 두 자연수 중 하나일 떄 최대가 되겠네요.
참고로 ln (2031/2030) = ln (1 + 1/2030) 이고, x/(x+1) < ln (1+x) < x 임을 이용하면
1/2031 < ln (1 + 1/2030) < 1/2030 이니까 위 값은 2030과 2031사이의 실수이고, 따라서 n=2030 or 2031일 때 최대가 될거에요.
x/(x+1) < ln (1+x) < x의 증명은 (단,x>0 일 때)
g(x) = x - 1/ln(1+x) 및 h(x) = ln (1+x) - x/(x+1)라 두시고 미분하시면 됩니다.