Cantata님 2014 B형 모의고사 푸신 분들 28번 헬프좀요
28번 벡터문제 못풀겠어요 ㅜㅜ
도와주세요 올비 수학고수님들
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
손가락이 꽁꽁 얼어서 고드름처럼 부러질거같아…
-
사교육카르텔 추방하자 제발..
-
학바학인가요?
-
제가 좋아하는 세 가지입니다.
-
화1 46맞고 3떠서 충격받은 수시런데.. 화2 하는게 정말 좋은 선택일까요?...
-
늦었다 0
좀일찍나올걸ㅠㅜ
-
47 48 표점 합쳐지는 것까지는 생각도 못했는데 갑자기 쫄리게하네
-
지금 고려대 결과나오는거 학종인가요 아니면 교과인가요
-
적당한 흐림에 해뜨고 비내리는..
-
합격ㅇㅈ 13
고연전 나와!!!
-
국수영 기준 6모 243, 9모 232 (찍맞 빼면 233)뜨다가 수능 때 443이...
-
취미 비슷한 친구 만들수 있냐
-
논술보러가면 인정이라길래 오늘 학교 결석했는데 보니까 간호는 어제임… 모르는 척 수험표 내볼까 하…
-
좀 전에 올아온 화학 문제는 진짜 왜 부피 저딴 식으로 그려놓음? 0
평가원도 저렇게 뭣같이 그려놓을 때 있음? 아님 내가 모르는 뭔가가 있는 거임? 진짜 모르겠음
-
지사의,지방치한 너무 빈 거 같지 않음?평소보다 적은 거 같은데 작년경쟁률 10분의...
-
흐흐
-
걍 죽고싶다 ㅅㅂ
-
근데 겨울 옷이 없음..
-
비바람맞았다 4
어우추워
-
Team04 10
Individual 04가 아님을 보여주자거
-
오티에서 이번수능 19번까지 20분컷으류 막힘없이풀면 뉴분감 하라는데 14 15가...
-
도르래가.. 가장 어려운것 같아요ㅠㅠ 2문제가 안풀리는데 도와주시면 감사하겠습니다..
-
성논 3합5 0
성논 에너지 학과 쓰신 분들 다들 얼마나 푸셨나요 ?? 3합5 맞춘 사람 많았을까요 ?? ㅜㅜ
-
생윤 31 0
3컷 기원,,,,,,!,진짜 제발 나한테 이러지마....
-
에어팟 ㅁㅊ 0
노캔되는 거 27만원이네 어떻게 된 게 갈 수록 가격이 더 오르냐
-
ㄱㅅㅎㄴㄷ ㄱㅅㅎㄴㄷ!!
-
한국능력시험 공부해볼까
-
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
국어 93아님 90인데…
-
롤 새시즌 변경점 읽어야하는데 너무 길어...
-
오르비에도 올라온거 있어요? 출제팀 들가고싶은데 공고가 수능끝났는데도 안보이네요 ㅠㅠ
-
건동홍~국숭세단 라인이나 지거국 경북대, 부산대 쪽 공대 가고싶은데 확통+사문생명으로는 무리일까요ㅠ
-
자율동아리진로에서만 물어봄 공동교육도 3번이나 해서 이건 무조건 물어볼줄 알았는데
-
제가좀 개복치 멸치인데 15
운동 꾸준히하면 체력 길러지는거 체감되나요? 체력똥망이라 어디 멀리 여행가면...
-
‼️[고려대][공식 오픈채팅방] 고려대 25학번 공식 옾챗 오픈‼️ 0
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
4시까지 접수받는다는게 아니죠?
-
아직 뉴런같은 실전개념은 어렵다고 판단하여 기출 1회독 중인데 기출을 충분히 풀고...
-
변표 쓰는거면 0
백분위가 중요한건가요
-
오지콤인듯뇨 2
교수님을 보면 가슴이 욱신함뇨..
-
한달 넘은듯 유산소 너무 유기했나
-
맞나? 글 읽는속도가 빠른편은 아니긴함
-
Team 04 이제 해체됨?
-
ㄹㅇ..
-
아는척좀해봐써여
-
이번 수능 풀어봤냐길래 미적분은 개념 이제 막 끝나서 공통만 풀었다고 말햇은데 그럴...
-
사실이죠? 군대갔다가 재수하냐, 재수하고 군대가냐 차이인듯?
-
작년 70%컷이 952점인데 저도 올해 예상환산점수가 952점이거든여 근데 텔그...
-
속눈썸 정리 어케해야됨요? 자주 빠져서 눈에 들어가는데 걍 손으로 좀 뽑아도 되나요?
(점A,B고정된 상태.) 중심이 P인 구가 A,B 다 지난다는 말은, PA=PB라는 뜻이니까, 선분AB의 수직이등분면(평면 알파라고 부를게요) 위에 점P가 있다는 이야기지요. (AB의 중점을 지나고, AB에 수직인 평면 위에서 점P가 돌아다니고 있는 거에요.)
벡터PA+벡터PB = 벡터PQ 는 사각형PAQB가 평행사변형이라는 이야기고요(사실 마름모), 따라서 Q도 평면 알파 위에서 돌아다니고 있어요. Q가 O에서 가장 가까우려면 원점O에서 평면 알파에 내린 수선의 발이 Q가 될 때이겠지요. 이 때 PA=QA=PB=QB니까, QA의 길이가 구의 반지름과 같음!
이등변삼각형QAB에서 QA 길이 구하려면, AB의 중점M이라 할 때
QA = 루트(QM^2 +AM^2)
QM길이 구하기 --- OQ // AB이므로 Q에서 AB에 내린 수선의 길이(=QM)나 O에서 AB에 내린 수선의 길이나 같으니, 결국 O에서 직선AB에 내린 수선의 길이 구하면 됩니다. 계산해보시면 QM=2. 따라서 QA=루트(2^2 +3^2 ) = 루트13. 답은 13.
syzy 님 풀이가 가장이상적이지만 조금 다른관점으로도 풀수있겠네요.. 좀지저분하기도하고 허접하지만 .. 한번올려볼께요 완전히 수식풀이라고할까요 ?
벡터PA + 벡터PB = 벡터PQ 를 바꿔요 양변에 2분의 1을하면 AB의 중점을 M이라고 하면 벡터PM=2분의벡터PQ가 되잖아요 그랬을때 M=(2,0,2) 가되요 일단 여기까지 구해놓습니다.
①P=(a,b,c) 라고하게되면 선분PA=선분PB 죠 그식을 세우게되면 a-2b+2c=6 이나올꺼예요
②처음에 바꿔논 관계식을 쓰게되요 PQ의 중점이 M이되는거잖아요 그래서 Q좌표를 구하게되면 Q=(4-a,-b,4-c)가 됩니다 선분OQ의 길이를 나타낼수있고 그식은 루트{(a-4)제곱+(b)제곱+(c-4)제곱}이 되요 그런데 선분OQ 가최소가될때를 구하고자 하기때문에 뒤에 =루트k를 붙여줍니다. 그럼 양변제곱하면 구형식의 식이죠 ?
①②를 모두 만족시켜야하는 (a,b,c)고 선분OQ가 최소가 되야하기때문에 평면과 구가 접하는 형식이되야되요.그런데 사실 접하는것에서 k값을 굳이 구할필요는 없습니다. 왜냐하면 접점(a,b,c)를 구할꺼니까요 위에서 구,평면 막이리저리 말했지만 사실 (a,b,c)는 구와 평면을 모두 만족시켜줘야하는 점이예요 그렇게되면 구와 평면이 접하는 그림을 그린후에 적절히 계산해주면 접점은 (10/3 , 4/3 , 8/3 ) = (a,b,c) 가되겠졍 그르면 이제 선분PA를 구하거나 선분PB 아무거나 구해도 답을 낼수있어요^^