행렬 명제 참/거짓 판단, 수학 고수님들 부탁드립니다
과외 수업 중에 나왔는데요
AB=BA가 아니고(교환 법칙 성립 안한다는 뜻) (AB)^=A^B^이면 A역행렬, B역행렬은 없다
일반적인 증명도 어렵고 반례를 찾기도 힘들어서 그냥 참이겠거니 하려고 했는데
확실하게 알고 넘어가겠다고 하네요
증명 부탁드립니다
^은 제곱을 했다는 뜻입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스캐20화 예상 0
예상컨대 예서가 김은혜 딸이고 혜나가 곽미향 딸인것 같다. 오늘자 마지막 김주영...
-
스카이캐슬이라는 드라마 내에서 의대에 목을 매는거나.. 수험생 커뮤니티에서 의대에...
-
샘은 답안지 유출이라고 하셨지만 쨌든~ 스캐 예측하신것처럼 수능 스포도 해주시길...
-
두근두근 스포는 다 봤지만 그래도 꿀잼 예상 ㅋㅋㅋ
-
설마 염정아가 혜나 죽이는 건 아니겠지; ㅎㄷㄷ 혜나가 죽이고 싶으면 죽여보라는...
A,B의 역행렬이 존재한다고 가정하면,
AB=BA이므로 모순.
따라서 참.
이렇게 하면 되지 않나요?
단순히 a,b의 역행렬이 존재한다고 가정햇는데 모순인거면 a의 역행렬이 존재하는데 b의역행렬이 존재하지않는경우와 b의역행렬이 존재하는데 a의 역행렬이 존재하지않는경우도 생각해야하지 않을까요
abab=aabb
abab-aabb=0
a(ba-ab)b=0
ba-ab=0이 아니기 때문에
a X (ba-ab)b = 0이기 위해선 a와 (ba-ab)b 가 영인자 이므로 둘의 역행렬이 존재하지 않아야함으로 a의 역행렬이 존재하지않고
a(ba-ab) X b = 0이기 위해선 a(ba-ab)와 b 가 영인자 이므로 둘의 역행렬이 존재하지 않아야 함으로 b의 역행렬이 존재하지 않아야 하기 떄문에
a,b의 역행렬이 존재하지 않는다 아닐까여
그리고 덭부치자면 ab=ba가 거짓이기 때문에 a와 b는 영행렬일수 없기 떄문에 저렇게 추론햇어요
오 굿!