통계적 추정 부분의 한가지 오개념에 관하여
일단, 글을 쓰기에 앞서 이 내용은 "통계부분을 적어도 한 번 이상 공부한 적이 있는 분"들을 대상으로 하고 있다는 것을 밝힙니다.
또한 항상 1~3등급 이내로 수학등급을 받아오셨던 분들에게는 너무 당연한 이야기일 가능성이 높습니다.
또한 본인의 수학 실력은 지나가던 초등학생도 비웃고 갈 정도로 아주 하찮은 실력임을 감안해주세요.
가령 이러한 문제가 있다고 합니다.
또한, 이런 풀이가 있다고 합시다.
결론부터 말씀드리면, 위의 풀이는 엄연히 잘못된 풀이입니다.
위의 풀이의 잘못된 점을 지적하기 위해서는 다음과 같은 사실을 미리 알아두셔야 할 필요가 있습니다.
- 신뢰도 구간 계산시, "실제의 경우 모집단의 표준편차를 모르고 있는 경우가 대부분이다. 이런 경우 표본의 표준편차를 이용해도 된다는 것이 알려져 있다." (수학의 정석 p.312)
본론으로 들어가서,
위에서 제시된 저 방법에서 무엇이 잘못된 것일까요?
위의 방법에서는 "표본표준편차"와 "표본 평균의 표준편차" 이 두가지를 혼동하여 사용했습니다.
즉, 위에서 구해야 할것은 표본표준편차를 이용한 신뢰구간 계산이나, 실제로 해버린 것은 표본표준편차를 표본 평균의 표준편차로 혼동 ㅡ> 표본 평균의 표준편차로 착각한 수치를 이용하여 모표준편차 계산 ㅡ> 잘못된 답 도출의 과정으로 가버린 것입니다.
종종 보면, 의외로 많은 수의 수험생들이 이 두가지를 혼동하여 잘못된 계산절차를 밟는 경우가 많습니다.
이 두가지 개념에 대하여 자세히 알아두는것이 중요합니다.
상당히 헷갈리기 쉬운 개념이니까요.
자잘하지만 어느정도의 과외경험도 있었고, 본인 또한 고등학교 수학 교육과정을 밟아온 사람입니다.
이 부분에 대해서는 한번만에 헷갈리지 않고 바로 독파해낸 사람이 정말 드물었습니다.
개인적으로는 "독학이 느려도 가장 완벽한 공부방법이다"라는 주의를 표방하고 있긴 하지만, 이 부분에서만큼은 아닙니다.
이 부분은 독학으로 공부하면 오개념이 생길 위험이 상당히 높은 부분입니다. 용어가 비슷하고 외워야 할 공식또한 많기에 상당히 헷갈립니다.
ebs인강으로도 충분합니다. 이틀, 혹은 단 하루만이라도 이 부분에 관하여 인강을 잠시 들어보며 정리해보는 것도 나쁘지는 않을것 같습니다.
또한, 위에서 제가 언급했던 표본표준편차, 표본 평균의 표준편차를 혼동하는 실수를 저지른다고 해서 부끄러워할 이유가 전혀 없습니다. 오히려 그런 실수를 하시고, 그 실수를 극복하려고 하는 자기 자신에 대하여 자랑스러워 하셔야 할것입니다. (저 또한 현역때 공부하면서 이 개념을 받아들이는데 꽤나 오래 걸렸으니까요.)
이 글 전체의 결론 : 표본표준편차와 표본평균의 표준편차를 헷갈리지 맙시다.
이 글의 구성 : 기-승-전-병 (내가 글쓰면 항상 이러더라 ㅠㅠ)
표본표준편차와 표본 평균의 표준편차 두개의 차이점은 제가 예전 어느분께 해드렸던 설명으로 대신하겠습니다.
* "표본의 표준편자" 와 "표본 평균의 표준편차"에 대해서 차이점을 설명하면 다음과 같습니다.*
1000개의 아이스크림이 있다고 합니다. 이 중, 포도맛을 0, 딸기맛을 1, 사과맛을 2 라고 해보죠. (이 세가지 맛으로만 이루어진 아이스크림 집단입니다.)
시행 1 : 일단 100개를 묶습니다. 평균을 구합니다. 이 평균의 값을 a라고 합니다. 그리고, 이 집단의 표준편차를 "알파"로 정의합시다.
시행 2 : 시행1의 100개를 다시 흩트려서 1000개에 포함시키고, 다시 임의로 100개 추출합니다. 평균을 구합니다. 이 평균의 값을 b라고 합니다. 그리고, 이 집단의 표준편차를 "베타" 라고 합니다.
.
.
.
.
시행 n번째 : 위와 마찬가지로 이 때의 평균을 "n"이라 합니다. 그리고, 이때의 표준편차를 "뉴"라고 합니다.
이제 가능한 모든 시행을 하였을때를 생각해보죠.
"알파, 베타, 감마...뉴" 이것들은 각 표본집단들의 표준편차인 "표본표준편차"입니다.
한편, "표본 평균의 표준편차"는 다릅니다.
a,b,c,d,....n의 값들을 또다시 집단으로 묶어봅니다. (순수히 "평균의 값들"만 집단으로 묶습니다."
a,b,c,d,....,n의 값들을 평균낸 것을 "표본 평균의 평균"이라고 합니다.
a,b,c,d,....,n의 값들의 표준편차를 계산한것을 "표본평균의 표준편차"라고 합니다.
그리고, 공식 (시그마)/sqrt(표본집단의 크기)공식은 "표본평균의 표준편차"를 구할때 쓰는 공식입니다.
위의 "표본표준편차"와는 전혀 관련이 없는 내용입니다.
또한 이 공식에 대한 고등학교 교육과정 내의 증명은 없습니다. "알려져있다."라고만 나와 있지요.
그림으로 나타내면 다음과 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이것좀 풀어주실수 있을까요...
-
정시컨설팅 0
정시컨설팅 어디가 유명한가요?? 시대인재는 재종이랑 단과 많이 들은 사람들만...
-
내신이 너무 아쉬워서 정시 준비하려는 현역입니다 1년동안 학원 없이 인강만 듣고...
-
인스타에 애기랑 강아지밖에 안 나와 너무 사랑스럽다
-
올해 사회탐구 과목별 만백 예상 어떻게 되고 있을까요?? 정법, 경제, 쌍사,...
-
논술 끝나고 통합사회 공부 하려는데 (문제 제작용) 1
교과서를 사야되나 아니면 시중 문제집을 사야되나....
-
모집정지보단 의평원 통과하고 더블링 없도록 24 올려보내고 1년 지연 입학하는...
-
너무배거파 0
우우우우웅우ㅜ
-
냉정하게 서울대 3
냉정하게 단순 백분위로만 보면 서울대 가능권이지만 표점만 봤을 때는 국어랑 정법이...
-
브왁해본사람 1
어떤가요 친구가 같이가자는데ㅜㅜ
-
이침 5
-
얼버기 8
아침에겨우일어났음뇨
-
3-2학기 독서를 못해서.. 정말 수시 다 떨어질꺼 같아 걱정이에요. 영어 때문에...
-
기하vs미적 1
올해 기하 공통 2틀 기하 4틀인데.. 내년에 미적으로 가는게 맞는 선택일까요.....
-
감사드립니다! 2월까지 있는 힘껏 6교시 도와드릴게요^^
-
하와와 느낌이 이상해
-
인서울 중위권 대학이고 3명 뽑는과 진학사 3칸이면 거의 힘들다고 보면 되나요?...
-
4,6,10 실수로 틀린거 빼면 물1물2 해보고 싶긴한데..
-
궁금하군
-
역시 명작이야
-
원래 다 노베였고 어찌저찌하면서 수학은 버리고 국어를 기대했는데 그냥...
-
닌텐도 스위치 OLED 모동숲 해보겠다고 가장 좋은걸로 사두고 한 한달했나
-
근데 왜 사탐런이 아니었는데?
-
고대 미디어학과 0
이먼 수능 몇 정도 되면감??
-
손글씨 죄송합니다 조건을 어떻게 줘야할지 모르겠어서 .. 까보면 되게 쉬울 거에요
-
유료 구독 특) 5
사기전엔 잘 쓸것같은데 막상 구독해두면 안씀
-
ㅇㅈ 8
-
샤워하다가 생각남 ㅅㅂ
-
물지했는데 2
물지랑 비슷한 느낌의 사탐이 뭐임? 물:경제 지:정법,생윤 이렇게 생각하면 되나?
-
한동대 아시는 분?? 14
어디서 보니까 한동대가 입결도 높고 좋은학교라는데 이번에 외교관시험 합격자있는거...
-
사탐 선택 과목 1
25수능 전에 사문은 잘 안 맞는 거 같아서 드랍하고, 생윤 윤사 선택했는데 수능날...
-
과탐 많이 안보는 약대나 수의대 가능할까요...
-
몰래친수능이라 1학기 비해 너무박아서 의심받을거깉음..
-
물화생 다 찍먹해보고 능지의 벽 느껴서 걍 뒤도 안 돌아보고 문과왔는데 나름 성공적인듯
-
토익 해보신분 6
지금 토익 공부해보려고 하는데 그냥 토익 기출 사서 풀기만 하면 되나요?? 730점...
-
다다음주에 일병이구나 12
이게 맞는건가
-
바쁠거 같은데
-
제발 부탁이다…ㅠㅠ
-
노베 재수 0
이번현역 (수학은 예체능하다그만둬서 50일수학부터하고았음) 67544 정도인데...
-
학력고사때처럼 0
수능 범위 걍 전과목으로 넓혀서 시험치는거 어떤가요 학력고사때 15과목이었음
-
28 수능부터는 내신 안 좋으면 명문대 못 가겠죠? 2
맞나요?
-
지금 예비고3인데 내년에 마닳로 기출 할 생각인데 마닳 2026나오기 전까지 뭐...
-
23211 (과탐 두과목임) 수학 항상 1이었는데 뭐에 홀렸나 계산실수 잔뜩...
-
텔그 674.47 진학 667.27 메가 663.05입니다
-
얼?버기 4
학교가는중..
-
통합사회 조교 지원할때 문제도 만들어서 가져가볼까요 3
문제는 내가 통합사회 내용을 까먹었단 말이에요
-
둘 중에 뭘 하는 게 더 수월하고 수요가 많을까요? 매디컬 최저 맞춰서 지방으로...
-
2025 커리 끝나면 그 해 교재는 구매 못하나요? 0
굳이 2026년도 커리 열릴 때까지 기다리지 않아도 될 것 같아서 25교재 사서...
가장 마지막 그림에서 빨간색 글씨 수정합니다 - 3.번에서 "모평균의 표준편차"를 "모표준편차"로 바꿉니다.
졸면서 만들었나 보군요. 또 하나 더 수정합니다. 저 위에 잘못된 풀이 예시에서 m(모집단)=65로 고치겠습니다.
그러면 위 표본의 평균을 표본평균x바 로놓고 우리가모르는 모평균m의 신뢰구간을 구하기위한식으로 [65- 1.96*15,65+1.96*15] 가 올바른 풀이인가요?
아뇨, [65-1.96*(15/sqrt(2500))], [65+1.96*(15/sqrt(2500))]이 옳은 풀이죠.
아하 표본의 표준편차가 모표준편차가되고 2500명에대한 표본평균의 표준편차를 구해서 표본평균으로부터 모집단을 추출해내는게 맞나요? 어지럽네요ㅠ
아뇨ㅠㅠㅠ
표본평균의 표준편차는 저 문제와 전혀 상관없는 개념이예요 ㅠㅠ
표본의 표준편차가 모표준편차가 되어서 저 신뢰도구간 공식에 넣는것이고,
가끔 어떤 분들이 표본의 표준편차와 표본평균의 표준편차가 같은것인줄 착각하고, (표본평균의 표준편차) = (모집단의 표준편차)/sqrt(n)공식 이용해서 (잘못된)모집단의 표준편차를 구해서는 답을 계산하기도 해서 그런겁니다.
공식에 넣어서 구한다 는표현을 풀어서 표본평균으로부터 모집단의 신뢰도를 추정한다 고 보면틀린건가요?ㅠ
아뇨 맞습니다.
일단 정리해보면요,
틀린 풀이
1. 문제에서 주어진 "표본 표준편차"를 이용해서 모표준편차를 구한다.
2. 신뢰도 추정공식의 (시그마)에 1번에서 구한 모표준편차를 넣어서 신뢰구간을 구한다.
여기서 틀린점은, 1번과정에서 쓰이는 공식이 "표본표준편차"가 아니라 "표본평균의 표준편차"를 구하는 공식이기때문입니다.
제대로 된 방식은 아래와 같습니다.
1. "모표준편차"를 모를때는 "표본표준편차"를 이용하여 신뢰구간을 구할수 있다는 것이 알려져있다.
2. 위에서 주어진 숫자 그대로 신뢰구간 공식에 넣어서, 모집단의 신뢰도를 추정한다.
감사합니다! 덕분에 개념확실히다지고가네요ㅎㅎ
스승님 수학에서 한 수 또 배워갑니다.(스크랩 좀 해갈게요~)
프로필 사진 바꾸셨군요... 그 전 프로필 사진이 인상깊었는데 ...ㅋㅋ
(시그니쳐에 담긴 말들이 궁금증을 자아내는 군요. project VT?)
하하;;; 그냥 컨셉 전환용으로 바꿔봤어요ㅋㅋㅋ
project VT는 내년되면 잘 알게 되실거예요 ㅋㅋㅋ
닉도 바꾸셨네요 ㅋㅋ 뭔진 모르겠지만 기대하고 있겠습니다~
진리의 정석
정석은 진리입니다!!
저도 문제풀면서 깨달았던건데 다시확인하고가네요
임의추출이 한번 뽑는거죠 여러번 뽑는게 아니라...??..
임의추출은 한번, 반복의 개념이라기 보다는 [랜덤으로 추출한다]는 개념으로 받아들여야 하지 않을까요.
용어의 개념을 뭉뚱그리지 않으려하며 교과서를 몇
.......네?
저도 이부분 헷갈려서 인강으로 해결했었는데 해결하고 나서 학교 수업을 들어보니 학교 선생님도 표본평균의 표준편차와 표본표준편차의 차이점을 모르더군요..
허허.....학교 선생님이 아무래도 오랫동안 가르치지 않는 부분이다 보니 잊으셨나 보네요.
하긴, 통계부분은 몇개월만 지나도 바로 싹 다 잊어버리고 새로 공부해야 될 지경이긴 하지요 ㅠㅠ
통계부분은 독학을 주로 하여 인강을 곁들이는 것이 진리!
조금 수정할 부분이 있는 것 같은데요,,
위에 적어놓은부분에 모평균이랑 표본평균이랑 같다고 되있서요.
어느 부분인지 구체적으로 말씀해 주실수 있나요?
'또한 이런 풀이가 있다고 합시다.'
밑에 글에서,
'm표본=m모집단'부분이요.
모평균을 추정하는 문제인데,
모평균이 표본평균과 같다고 하면 논리적으로 모순인거 같고요,
원래 모평균은 표본평균의 평균과 같다고 하잖아요 ㅎㅎ
제가 뭘 설명하고자 하는건지 글을 끝까지 읽어보시면 알거예요ㄷㄷㄷ;;;
앞부분만 읽으시면 오류가 있는것처럼 보이는게 당연합니다.
이 글의 메인 주제는 언급된 "저 풀이가 틀렸다"는 것을 설명하는 글입니다.
"표본 평균의~~~" 와 "표본의 ~~~"가 다르다는 것을 설명하는 것이 포인트.
저 예시로 든 풀이에서는 설명을 위해 일부러 논리적 오류가 있는 풀이를 넣어두었고요,
지금 이 글의 메인 포인트는 "저 풀이가 왜 틀렸는가?" 에 대해서 설명하는 거예요.
수정할것이 있는게 당연합니다. 틀린 풀이를 일부러 넣어둔거니까요.....^^;;;
제 글에 관심 가져주셔서 감사합니다~~!!