좋은 해설과 나쁜 해설을 구분할 줄 아는 눈
이런
질문을 하는 학생이 있었습니다.
“쌤! 쌤
말대로 최대한 해설을 안보고 스스로 문제를 풀어보려고 했는데
도저히 안되네요.
진도가
하루에 한 장도 못나가요. 어떻게
하죠?”
저는
이 질문에 대한 답을 “좋은
해설과 나쁜 해설을 구분할 줄 아는 눈” 이라는
글로
답변을 드리고자 합니다.
결론부터
말씀드리면
개념
및 대표유형 문제풀이 능력이 갖춰지지 않은 학생들은
문제가 안풀린다
싶으면
빨리
해설 풀이를 참고해서 ‘아~ 이렇게
하는거구나’
캐치한 다음 동일한 유형을 반복적으로 풀어서 자기의 것으로
만들어야 합니다.
이때
좋은 해설과 나쁜 해설을 구분할 줄 아는 눈이 필요합니다.
아래
두 가지 사례를 보시죠.
사례1
개념에
대한 설명을 읽고 이해한 다음 문제풀이에 돌입한다.
‘허걱! 이거
뭐야 왜 하나도 안풀리지?
답을 좀 봐야겠네…아…요렇게
푸는 거구나’
‘아~ 이건
풀긴 풀었는데 엄청 오래걸리네…이
방법 밖에 없나…해설은
어떻게 풀었을까’
사례2
개념에
대한 설명을 읽고 이해한 다음 문제풀이에 돌입한다.
‘허걱! 이거
뭐야 왜 하나도 안풀리지?
답을 좀 봐야겠네…머야
이거…이런
XXXX
어떻게
이걸 생각해내라는 거야, 말도
안돼’
위 두 가지 사례에서 사례 1은
좋은 해설이요, 사례
2는
나쁜 해설이라고 볼 수 있습니다. 물론
사례
2와 같은 문제를
생애처음 접하면서 위의 해법을 생각해내는 분들도 있을 수 있다고 봅니다. 하지만
일반적으로는 저런 발상을 떠올리기 힘들죠. 아래와
같은 접근법이 보다
현실적인 접근법이죠.
좋은
해설의 특징은 일반적인 지능 수준을 가진 학생이라면 누구나 떠올릴 수 있을법한 발상을 적용한다는 것입니다. 그렇기
때문에 동일한 유형의 문제들을 보면 해당 발상법이
자연스럽게 떠오르게
됩니다. 그리고
좋은 해설은 해설을 이해하는 과정에서 학생들로 하여금 논리적인 사고를 하게 하여 고난이도
문제를 풀어내는 힘도 키워줍니다.
하지만
나쁜 해설은 IQ150 이상의
천재 학생들만 떠올릴 수 있을 법한 발상을 적용해서 문제를 풀어놓습니다.
이런 해설은 똑같이 생긴 문제가 다시 출제될 때만 효과를
발휘하겠죠. 수능공부엔
전혀 도움이 되질 않습니다. 해설을
보고 이해하느니 그냥 문제를 버리는 것이 낫습니다.
마지막으로
짚고 가야 할 중요한 것이
있습니다.
좋은
해설과 나쁜 해설을 구분할 줄 아는 눈은 개념공부 또는
대표유형 문제를 푸는 단계에서만 필요합니다.
개념이
얼추 완성되고 대표유형 문제들에 대한 풀이가 완성된 학생들, 즉
수능기출
또는 EBS반영도서를
공부하는 수준의 학생들에게 있어서는 좋은
해설이란 없습니다. 해설은
다 나쁜 것이라고 보셔도 무방합니다.
일단
해설을 보는 순간 그 문제는 자기의 것이 안되었다고 보심 됩니다.
이
때부터는 그야말로 더 고민한 자가 더 높은 점수를 받게 되는 것입니다.
어서
빨리 개념과 대표유형 문제풀이 공부를 마스터하고
해설에
절대 의존하지 않는 수학 고수가 되시길 바랍니다.
조관T 수학기본
무료특강 바로가기:
http://class.orbi.kr/class/119/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 쓰려는 학과에 낙지 지원해줘서 다 도망갔으면 좋겠다
-
하루만에 발급되는 병원 있어서 버스 타고 여행 중
-
냥대식 점수 0
인문 기준 927 정도로 나오고 상경은 925 정도 나오는데 어느 과까지 가능한 점수일까요?
-
못갔음.....ㅜㅜ 성적이 낮아서
-
맨날 밀리의 서재나 도서관에서 빌려서 읽었는데 오랜만에 서점 구경 좀 가야겠다
-
정각에 들어가는 게 정배인가요 아님 55분? 58분? 추워서 얼 거 같금
-
가군 원서 2
문디컬 vs 연경 문디컬: 서울대 떨어져도 오히려 좋음 연경: 수시충이 정시로도...
-
아우졸려 1
걍잘까
-
컨설팅 추천좀요 0
수시러입니다 곧 고2생기부 마감하면 컨설팅 한번 가보려고 하는데요 추천하시는 곳...
-
익명투표임요 1. 미충족이라 안입력했다 2. 충족했는데 귀찮아서 입력안했다
-
진학사 칸수 2
가나다군 셋 다 6칸추합으로 쓰는건 좀 이상한가요?
-
밖에 나가기가 시러,,,,,,,,,
-
그렇게 잘 알면 너가 워렌 버핏 따지 그랬냐
-
두서없는 푸념임에 주의) 고대 환경관련낮공, 자연 6칸 / 일어일문6칸 점수는...
-
07이고 김기철 커리 문해원 문해완 들었는데, 김기철쌤이 키워드 잡고...
-
수시러인데… 그냥 궁금합니다 이과문과 둘 다요!!
-
낙지 때문에 알바 중인데 아직 월급이 안 들어와서요 조금이나마 저의 위치를 알고 싶네요..
-
지스트까지 최초합 했습니다.. 3개 붙으니깐 기븐째지네요… ㅠㅠㅠ 지스트 등록해야징
-
강남 8학군 자사고 내신 총합 4.2 국어, 수학은 3or4 영어는 4or5 물리...
-
옯비언들로 세수하고 밥해먹고 샤워하고 껴안고자고싶네요
-
지를곳이 없음뇨
-
본인 국어 노베임 걸러들으셈 "한정된 시간안에 가장 합리적인 독해를 해야한다" 이게...
-
라인봐주실분 1
서성한 자연 갈수 잇나요?
-
님들이라면 어디 고르심 숭실대젤 낮은 어문과랑 아주대 경영은 추합권
-
아 기하할까 1
정병호 풀커리 ㄱㄱ...?
-
1지망 광탈 면접까지 보고왔는데 노예비
-
진짜 삼각함수활용은 누워서떡먹기였겠네 이좋은걸왜너네만한건데
-
그렇게 안정성 평균 하방 좋아하는 애들이 고대 문과 저평가하는지 모르겠음...
-
11월 말 :성적표 나와야 의미 있어요 12월 초 : 수시 결과 나와야 의미 있어요...
-
10~15만 원 정도 생각하면 될ㄲㅏ요
-
99점 03년생 1월 컷 실화냐
-
2학년 모고 이정도로 나오는데 1년 빡세게 정시올인하면 설대 가능해요?
-
친구를 만나느라 444
-
갈라칠 수 있는 모든 걸 갈라침 나이 성별 직업 지역 갈수록 직장퀄리티도 낮아지고...
-
3월정도부터 라이브반 들어볼생각있는데 1월부터 안들으면 수업 따라가기 어렵나여?
-
저한테 뭉탱이로 쪽지 알림 좀 보내주실 분 계신가요 긴장돼서 오히려 무한 새로고침을...
-
한지 vs 세지 1
어떤 걸 더 추천하시나요? 한지 추천이 조금 더 많은 것 같던데 이유가 있을까요?
-
심장 소리로 모든 걸 대신하게 하더라
-
531인데 5칸이 1칸 될수도 있고 3칸이 5칸 될수도 있고?
-
진학사 비싸다 8
진학사 사야되나요? 피오르컨설팅 예약했는데 구지 살 필요 없겠죠? 재수학원에서도...
-
그리고 나 붙여주면 안 되나
-
공부하기시러,,,,,,,,,,
-
고신대의대 3
예비몇번까지돌까요?
-
왕
-
아무래도 신촌이 맞겟죠? 영어가 2긴함
-
뒷돈주고 입학하는게 불공정하다고 생각하는게 대부분 중론이고 이런 공정성 이슈에...
-
어디일까요
-
종강했다 5
으하하하하
사실 제가 본 수학문제집들엔 사례1같은게 99%였고 저는 사례2정도로만 풀어서 답지같은 접근을 키워야겟다 햇는데 제가 잘못된게아니었군요..
좋은글 고맙습니다
ㄹㅇ 진짜 완전공감 2번에서 적어도 완전제곱식이라는걸 한줄만 써줫으면 나중에 저렇게생각해서라도 풀텐데 처음볼때 엄청막막햇음
Good
와 좋은글이네요 많은분들이 참고하시면 좋을것같네요
풀이 2를 바로 생각해내는 사람도 있습니다. 어려운 풀이인지 모르는 사람도 있어요ㅋ
좋은 집필진이란 어떻게 풀어주는 것이 좋은 풀이인지 알고 그것을 제시해주는 사람이 아닐까 합니다.
맞습니다 간혹 일반적인 방법보다는 정말 창의적인 방법으로 접근하는 학생들이 있더라구요..가장 좋은 건 하나의 문제를 전혀 다른 색다른 여러 방식으로 풀어내는 능력이겠죠...그런 능력자가 되시길~
풀이2가 바로 생각나지 않는게 이상하다고 보는데... n^2+5n도 아니고 4n인ㄷ...
제가 많은 학생들과 같이 공부해본 경험에 의하면 생애처음 접할땐 생각을 많이들 못떠올리던데^^; 방화님이 수학을 잘하시나봐요 수능만점까지 열공하세용~~
풀이2번
고1때 하던 식변형인데
오히려 저기서 규칙성 발견하려고 생각하는게 더 힘들어보임
규칙성을 발견하는 능력은 수능에서 정말 중요합니다. 특히 수열, 극한문제 풀이에 정말 효과적이죠..저 정도의 규칙성 발견과 관계식 세우기는 반드시 갖추고 있으셔야할 센스입니다
이글에는 맞지 않지만 질문하나 하겠습니다.
고1때 배우는 고등수학을 한번 정리하려고 하는데 고1교과서에 있는 개념과 기본문제만 풀고 정리를 하려고 하는데 괜찮을까요? 즉 교과서 개념만 간단하게 정리하면 충분한지 고1응용 문제까지 풀어야 하는지 궁금합니다.
참고로 저는 이과 학생이고 수능에 필요한 고등수학을 질문드리는것입니다.
교과서만으로는 좀 약합니다 이과를 지망하는 예비 고2라면 겨울방학동안 쎈수학같은개념과 대표유형을 같이 다루어주는 문제집을 끝내보세요..그리고 나서 제가 올려놓은 수학기본 무료특강을 들어보세요..강의가 80%이상 이해가 된다면 고1 개념은 얼추잡힌 것입니다 열공하세요
예비고2는아니고 수능을 보는 수험생인데요. 수능에 나오는 고등수학정도만 알면 될것같아서 교과서로 개념빠진거 보충하려고 했는데 꼭 쎈수학까지 풀어봐야 할까요?
수능에 나오는 고1수학을 커버하고자 하시는 거라면 무료인강에 올라와 있는 제 강의 "수학기본 무료특강"을 보십시요. 수능에서 다뤄지는 중학교 및 고등수학의 대부분 내용을 포함하고 있습니다. 교과서로 공부하면 '아...이런 개념이 있었지'라고 다시한번 기억을 떠올릴 수는 있겠지만 그건 개념을 읽는 것일 뿐 진정한 이해는 문제풀이를 통해 이뤄진다고 전 생각합니다. 열공하세요!
사례2 부분에서 전 당연히 부등식으로 정수부분 소수부분 나눠서 정수부분이 저거니까 극한을 보내면 그거겠지!! 전 첨봤을때 이런풀이로 했거든요.... ㅋㅋ 근데 나중에 고3되서야 알겠더라구요 발견적 추론이 얼마나 중요한지를요 ㅋㅋㅋ 사례2번 공감합니다 ㅋㅋ
정말 좋은 글 잘 봤습니다. :)