이거 아무도 못풀죠?
ㅋㅋㅋㅋㅋ자연스레읽힘 ㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 사탐은 점수가 안정적이고 국어는 1이 뜨긴해도 고정은 아닙니다 공익 근무하면서...
-
목표는 크게 0
-
클린유저 기준 2
애니프사 연예인프사만 아니면 생존
-
전 클린하죠? 0
-
헬로 유뚭 땡스 뚜 와칭 마 포스트 뚜데이즈 토삑 이스 "엠 아이 끌린 유저?"...
-
메디컬 계약학과같은 취업보장학과 제외 가서 무슨 일함? 순수 궁금해서
-
ㅈㅅㅇㅂ님이 당첨되셨습니다
-
오르비엔 의대 서울대 옵티머스들이 넘쳐나네..
-
외클릭.
-
와살기귀찮다 1
기본소득지지합니다 포퓰리즘지지합니다 그냥사료먹고살래요
-
진짜 클린유저 등장 12
아님 망고....
-
눈이 오네 10년만에 봐요 대박
-
ㄹㅇ..
-
클린유저 메타 5
뭐냐뇨이
-
맞아야돼 좀 어이, 이것은 "하향 평준화" 라는 것이다.
-
。◕‿◕。
-
일반생물학 일반화학 1학년 때 듣나요?
-
우울핑 5
어쩔 수 없음... 나이로 육수생인데 부모님이 저런 말을 안 하는 게 이상한 거지
-
어디가서 오르비한다고 말 안해야겠다 ㅎㅎ
-
최근 분노농도가 너무 짙어지긴 한듯
-
신이 진성난수를 발생시켜서 랜덤한 논리가 생성, 간섭, 적자생존, 진화하여 세상을 만들었다.
-
클리유저인가요 3
갑자기 메타가 도네요
-
반드시 5시간 이상을 주무셔야합니다 반드시요 그 이하부터는 감소량과 비례해 하루가...
-
왈 승 1
-
전 클린유저에요 3
ㄹㅇ
-
100 100 1 50 41 이면 어디까지 되나요
-
너무 슬퍼요
-
시대재종 높반 4
언미영화생: 78/95/2/90/90이고 영재고 졸업인데 목시 높반 가능할까요?...
-
바코드 출력해서 들고다닐까 이거 편할거같은데 출퇴근 카드는 따로 안줬음
-
일단 합격증 받았고 개인적으로도 참 많은 사건들을 겪고
-
다들 사랑햐
-
맞팔구 6
알림창을 북적북적하게 만들어줘
-
If all you have is a hammer, everything looks...
-
작년 더프 과탐 0
작년 더프 지1 시험지 3개인가 있어서 3모 준비용으로 가볍게 풀어보려고하는데 퀄 괜찮나요??
-
셈퍼님 글보고싶은데 팔로잉목록 보는법을 모르겠네
-
반박은 받지 않아요 왜냐면 사실이긴 때문임뇨
-
홍익대 새종캠은 등록하자마자 바로 휴학할 수 있나요? 0
입학처보니까 그런거같아서요,,혹시 다녀보심분 잇나요
-
보면 안 될 걸 봐버림..
-
신이 진성난수를 발생시켜서 랜덤한 논리가 생성, 간섭, 적자생존, 진화하여 세상을 만들었다.
-
655.4x 살려만 다오
-
처음 딱 갔을때 책하나 가져가서 진도나가면 되나 아니면 레벨테스트 만들어가서...
-
외대로 만족하는 사람을 한 명도 못 봤네…
-
본인상태 강의 6강 밀림 현재 카페인 과다섭취로 집중력 이상이슈 그래도 노력하면...
-
4칸의 힘을 보여줘
-
왕복 두세시간되는 통학러 많은가요
-
라면먹을때 받침대로 유용함
-
음음 범부여 5
나는 범부여 연논은 도저히 못풀겠다 언제나 범부임을 잊지 말것.
-
이재명, 오세훈, 이준석 토론실력순위 어떻게 보시나요? 6
이번대선 저렇게 나오면 귀가 즐거울거 같은데
강대에서 어제 배운거 ㅋㅋ
극한값 분배하는 건 항이 유한할 때만 성립하니까(?)
라고 어디선가 본거같은데...
이게 맞는듯 ㅇㅇ
먼가 3번째줄에서 4번째줄 가는 게 틀린 거 같은데 ...
설명은 못하겠다
비슷한걸 교과서에서 봤는데
정작 해설을 안달아놓음 ㅁㅊ
생각해보라고 하고 답은 안알랴줌 나쁜놈들
원래 교과서에 ~알려져 있다. 이런 식 서술은
니들 수준으로는 이것에 대한 증명은 꿈도 꾸지마!
라고 읽으면 된다고 한 모 수학강사가 말씀하신..ㅋㅋ
엔분에 엔을 엔분의 일로 엔개로 나누고 극한을 보내면 무한대분에 1이 n개 밖에 없는건데
엔분에 엔을 극한보내면 무한대분에 1이 무한개 있는거잖아요 따라서 저렇게 분할해서 극한보내면 안됨
뭐라는거야 설명을 못하겠네 ㅠㅠ
첫번째줄 맞나요? n/n은 상수분의 상수로 나타낸것이지 n이 변수가 아니잖아요....그러면 그 n을 무한대로 보낸다는건 n을 변수로 인정해버린다는 뜻이 되는데요?
즉 n/n 과 lim( n/n)의 값이 같은 건 우연의 일치일 뿐 동치시켜서 풀면 안될꺼 같아요!
우와;;; ㅋㅋㅋ
이거 설명좀 해주시지 ㅠ
님이 설명한게 맞습니다 ㅎ 유한개까지만 성립되요
오홍~
같은 내용 포만한에 질문했떠니 난만한느님이 답변해주시길,
lim(an+bn)= lim(an) + lim(bn)
이라는 성질은 an, bn이 수렴하면 성립한다고 배웠는데,
이것의 따름정리로 증명할 수 있는 한계는 an bn cn ... 이 유한개일때이구요.
그 개수가 무한개일때에는 함부로 극한의 성질을 적용할수도없고, 교과서에서도 배운적 없고, 증명하지도 못합니다. 틀린명제니까요
즉, 항이 무한개일 때
lim(an+bn+cn ...) = liman + limbn + limcn + ............
이런건 없습니다.
라고 하십니다.