리농모 1회 26번 통계문제 오류?
표본 평균의 모평균 m에 대한 '신뢰도 95%의' 신뢰구간이 [루트n,3루트n]이었을 때
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어제 생일이었음 0
초딩 때는 그냥 선물 받고 부모님이 갖고 싶은 거 사주니까 마냥 좋았음...
-
기차지나간당 0
부지런행
-
오래된 생각이에요
-
얼버기 0
좋은 아침
-
성대 복전 0
확정 점수는 아니지만 가채점 낙지 기준 성대 사회과학이 6칸, 인문과학이 7칸 정도...
-
기상 완료
-
춥고배고프다 2
밥줘...
-
이젠 이시간까지 안자고있네ㅋㅋ
-
밤샘해버렷네 4
으으
-
합격생중에 수리 틀린 경우도 있나요?
-
미친짓이겠죠?
-
심심해서 2
수분감 샀음 공통+미기확 전부 다 심심할 때마다 풀어야지 즐겁다!
-
김동욱쌤 기출 0
일클 + 연필통 하면서 기출까지 같이하려는데 추천하는 기출문제집있나요?
-
아이디드리면핑까해드립니다.
-
셋 중에 누가 제일 노래잘함?
-
삼반수에 대하여 1
(요약 있습니다!) 이건 제 얘기가 아니라 제가 아주 아끼는 친구 얘기입니다 (저는...
-
표점 뭐 134임? ㅋㅋㅋㅋㅋ 납득하기 어려운데
-
지금 일어난 게 아니라 아직 안잔 거임.. 몇주 뒤에 유럽여행 가는데 강제 시차적응 on
-
딱알았다 1
누누로는 골드탈출못한다 내가 무언가 해야하는구나
-
컨설팅 받을까요 5
올해 삼수째고 목표하던 대학 라인이 간당간당한 성적이라 작년 이맘때쯤보다 더...
-
얼버기 2
는 아니고 술먹고 이제 집들어가는중 헤헤
-
잔다 2
르크
-
패턴 정상화 시킨다
-
이러면 무슨 의미가 잇음
-
이주비용 다 갚고 집짓고 그냥 영락없는 한국인이네
-
얼버기 9
-
세상 답도ㅜ없이 문과스런 절 데려가주실 대학은요
-
제가 중학교 과정까지만 들어있고 고1 과정은 구멍이 많아 다시 해야하는 완전...
-
알맹이콘
-
제 재수삼수 최대의 적은 휴대폰이었음
-
잠이 안오뇨 1
인생 망햇뇨
-
기숙학원 사정상 못 가게 됬는데 혼자 어떻게 공부해야 할까요? (걍 과외 구해서...
-
제발. . . 지금 다니는 학교 뜨고 싶어요 ㅠㅠㅠㅠㅠ
-
집에서 독서실 다니면서 독재했는데 6월인가 7월쯤부터 풀어져서 새벽에 유튜브로 예능...
-
안녕하세요 예비고3 07입니다 원래 계획대로라면 2-2학기 내신때 다니던 학원에서...
-
했을 때 환산점수가 진학사랑 너무 차이가 나는데 대학교 그걸 믿어야 하는건가요?...
-
이젠 미적 80이 2일지도?가 되면 어떡하노 ㅆㅂ
-
사람으로 돌아갈 시간이다
-
주말에 좀 쉬어야지
-
그러기에는 늦었나.. ....?
-
ㅇㅈ 10
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
-
암튼 개꿀
원래 모평균의 추정할때 m=X바 로 대체해서 하지않나요..??
m의 구간을 찾는건데 어떻게 X바로 대체해서하죠?:;
X바는 표본의 평균입니다.
가령 우리나라 남자들의 키의 평균을 조사하기위해, 4800만 모두를 조사할수없으니 지역별로 랜덤하게 100명을 조사한다고 합시다.
그런데 공교롭게도 100명이 모두 농구선수들로 이루어져서
100명의 평균이 190이라고 할때, 이 190이 바로 X바가 됩니다.
그런데 우리나라 남자의 평균키 m(미터 말고그냥 모평균m)은 190일까요? 아마 170에서 180사이일겁니다.
X바를 m으로 바로 놓는것은 표본의특수성을 무시해 버리게 되는것이고. 표본평균으로 나온 190cm에서 +-오차구간으로 m의 범위를 추정하는것입니다. (물론 표본이 극단적이라 신뢰도가 높아도 그닥 합리적인 구간은 아니겠지만요...)
그리고 님이 대체해서 한다고 하신건 아마
모평균 추정과정에서 표본의 표준편차를 모표준편차로 대체해서 찾는다는걸 말씀하시는것 같습니다.
(이건 저도 왜 그런진 모르겠습니다만.. 설명이 없어서 그냥 그런가보다 하고있습니다. 뭐 대학가서 배우겠죠?)
네 맞습니다
표본평균이야 2루트n으로 구할 수 있지만 모평균을 구할 수 없습니다. 말그대로 통계적으로 추정하는 것이죠 추정에는 점 추정과 구간 추정이 있는데 이 경우 모평균 m을 딱 추정해내는 점 추정은 상정할 수 없고(교육과정 아닐뿐더러 점추정으로 구한다고해도 추정값이기에 모평균m은 절대 아님)
구간추정만 생각할 수 있는데요 이 경우 말그대로 구간이 나오기 때문에 M제곱 어쩌구를 구할 수는 없습니다.
정확하게 알고계시네요^^ 윗분은 모표준편차와 표본표준편차를 헷갈리신듯 하구요
표본 평균의 모평균 m의 '신뢰도 95%의' 신뢰구간이 [루트n,3루트n]이라는 말
자체가 m의 정확한 값은 모르고 루트n과 3루트n사이에 있을 확률이 0.95라는것이죠
m이 일정한 범위 내에 있다고 문제에서 말한것이 주어진 조건의 전부인데
그로부터 특정한 값을 구하라고 할 수 없을것입니다
예를들어
'x가 두 자리 자연수일 때 x의 값을 구하시오'
와 같은 상황입니다
심지어 위의 예에서는 90개 중에 하나 잘 찍으면 맞겠지만
정규분포함수는 연속확률변수함수라서 확률변수가
어떤 특정한 값을 가질 확률이 0이라 더욱 말이 안되는 상황이 펼쳐집니다
제가 그 문제 전체를 보진 않았지만 엑스바=m이라 놓을 때 말이 된다면
엑스바는 신뢰구간의 양끝값을 2로 나눈 값과 같으므로 엑스바=2루트n과 같습니다
결국 (2루트n)^2+n^2의 값을 구하는것이므로 출제자께서
표본평균의 제곱의 값을 구하라고 했으면 어떨까 싶네요
이러면 문제에서 묻고자 하는 것을 모두 물으면서
(n의 값을, 그리고 표본평균이 신뢰구간의 양끝값을 2로 나눈것임을)
오류가 없으니까요