칼럼) 수1 도형 특강 _ 기복없이 반드시 푸는 법
수1 도형 특강 .pdf
도형 특강을 필두로 수학 칼럼을 계속 게재해볼 생각입니다!
아마 투표 결과에 따라 다음 주제는 '합성함수 그리기 with 킬러 문제' 가 될 거 같네요.
파일로도 올리고, 여기에 사진으로 옮겨 붙여 설명도 덧붙일게요.
그럼 각설하고 시작합시다. :)
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------
잠시 덧붙이자면, 절대 잊지 마세요!
[ 요소들의 관계 = 그 법칙을 사용가능한 곳 } ---> 정말 중요합니다.
-------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
엄밀히 따지자면,
도형을 '이 방법'을 쓰면 무조건 풀려! 라는 말이
어떤 풀이를 하더라도 이런 논리구조를 따르면 된다는 뜻인거죠.
도형 공부는 마치 국어 공부처럼 해도 안 느는 경우가 허다합니다.
사람의 뇌가 워낙 좋아서 하도 비슷한 문제를 풀다보면
소위 말하는 '직관'이라는 능력 때문에 마치 자신이 실력이 늘은 것처럼 보이나,
정작 직관이 발휘되어야 할 시험장에서는 쏙 숨을 가능성이 농후합니다.
이를 대비하기 위해선,
어떤 상황이 오더라도 '일관적이고 논리적으로 풀 수 있는 방법'을
여러분이 갈고 닦으셔야 합니다.
이 두 문제조차도 제 풀이보다 쉬운 풀이가 존재하는 걸 압니다.
하지만, 이렇게 풀면 절대 풀지 못할 수가 없어요.
언제나 도형 문제 푸는 데에 3~5분 걸립니다.
이정도 빠르기면 그닥 느린 것도 아니고 시험장에서 언제나 사용가능하단 측면에서
훨씬 가성비가 높다고 생각됩니다.
어떻게 도형의 성질과 여러 법칙들을 공부해야 하는지와
도형 문제 풀이 시에 따라야 하는 논리 순서를 알아봤습니다.
앞으로도 여러 주제를 다뤄볼겁니다.
도형 특강은 우선 도형 문제들을 여러분이 어떻게 공부하면 좋겠다는
방법론적 측면에서 작성했지만,
합성함수 그리기나 미분 가능성은 제가 일방적으로 제 방법을 여러분께
주입하는 형식이 될 거 같습니다.
긴 글 보느라 고생많았고, 도형 문제가 막히면 큰일나는 무서운 문제가 아닌
'시험장에서 여러분들이 숨돌릴 수 있는 쉼터'가 되길 바랍니다. :)
0 XDK (+24,000)
-
16,500
-
1,000
-
1,000
-
500
-
5,000
-
급 슬퍼지네요
-
아니 모든 대학 다있는데 왜 필터에 서울대는 안보이지? 내 지능이 문제인건가? ㅠㅠ
-
846 언저리인가 후임들 전역 추카해요
-
이상형 2
하고 연락하고 지내다가 까였음 몇달째 정신상태가 고르지 못함.
-
저 한 사람한테 3번했다 손절당함..
-
그저 침묵을 유지하고 있는 나 나는 아무것도 말할 수가 없어요
-
나보다 내신도 낮고 하강곡선 그린 앤데 나 떨어진거 알려줬더니 30분뒤에 전화와서...
-
번따나 인따 시도해보시는 걸 추천함.. 제가 1년 전에 지금까지 본 사람 중 제일...
-
성별바뀌면 레즈는 할 수 있을거 같음
-
밷호쌤은 개념이 좋은데 유전이 아쉽다는 평이 많고 한종철쌤은 유전은 괜찮은데 개념이...
-
이 모든 상황이 좆같아서 눈물만 나옴
-
안녕하세요! 저는 이번에 인문논술전형으로 이화여자대학교에 최초합하게 되었습니다....
-
텔그랑 진학사 다 사서 고속까지 구매하기 부담스러운데 제 성적 한번만 돌려주실...
-
도대체 뭘 봤다고 무턱대고 번호 따냐 ㄹㅇ 그냥 육체적인 관계를 하고 싶어서자너
-
나는 번따를 할 생각을 못해봤는데 에초에 결과가 정해져 있어서 굳이 싶음
-
후한건가요? 짠건가요 ????
-
살짝 감동이네 한 기수 후배가 자기 말출이라고 기타치면서 노래해줌.. 내 감성ㅠ
-
초콜릿으로 해야징
-
빅5 간호대도 떡상할듯
-
윤도영 정시상담 보는데 내가 생각하는 조합이랑 거의 똑같아서 놀람 헉
-
헬조선 ㄹㅈㄷ 0
ㅋㅋㅋ
-
https://2022.colormytree.me/2022/01GM15B698JY2F...
-
키오스크로 내 음식 주문을 하고 있는데 어깨쪽에 자꾸 뭐가 닿는 느낌이 들음 뭐지?...
-
통통이 68점입니다 오티보면 뉴런 못들을거 같긴한데 둘다 실전개념이고 아이디어도...
-
감동적이야
-
성균관대 자연과학계열 서강대 화공생명공학과 고려대 건축사회환경공학과 진짜...
-
이나이먹고 모솔인데 14
삼수생인데 대학가면 연애할수있을까요 참고로 여자임
-
전 저를 사랑합니다 10
뻥임뇨
-
긴 이야기고 그냥 제 맘 가는대로 쓴거라 달라질 수 있음 그래도 보고 싶으시면 내일 보셈요
-
이거 변표때문에 쫄아있으면 그냥 야추 뗄까요?
-
인상이 선하다고 자꾸 칭찬해줌 아이 참 ㅎㅎ 자꾸 제사? 같이 지내자고 하고..
-
ㅁㅌㅊ임요 ㅋㅋㅋ 첫 대화가 페메로 고백임
-
나쁜놈 말이라도 좀 해주고 떠나지
-
오늘도 생산적인 옵생을 살았군요
-
뭐 어디 비밀조직 잠입한다고 헤어지자더니 어느순간 보니까 카페알바 하고 있더라
-
형식만 수1 수2 미적을 빌리지 고1수학의 정신을 요구하는 문제가 진짜 많아지긴 한 듯
-
그러니까 썸 타는거 같다가도 다들 떠나가더라 근데 진짜 상대방 마음이 확실한지...
-
안녕하세요. 입시 커뮤니티에 글을 직접쓰는 경험은 이번이 처음인데요. 무슨 글을...
-
반응이좋네
-
선택과목 추천좀
-
여자를 도저히 만날 수가 없으면 번따라도 해야지 어쩌겠음... 4
알바해도 고기집이라 남자밖에 없는데 어캄...
-
면접 준비때문에 0
교사 하고 싶은 이유 교사상 학생관 이런 거 생각해야 되는데 나 진짜 교사 하고...
-
2월에 가상계좌로 등록금 납부하라고 하는데 이때 210만원 한학기 등록금 전부를...
-
기출, n제 할 거 끝냈다는 전제하에 언제쯤부터 수능대로? 까진 아니더라도 국어...
-
웬 남자새끼가 와서 궁시렁대는데 왜 들어줌?
-
그러니까내가누군가를좋아한다는게 그사람에게는상처가 될수도있잖 아요......
-
지금 먹고싶은거 4
초록병은 맛없고 고급소주로 알코올 섭취하고 싶음
-
잠 온다 -ㅇ- 0
드르렁 피유
-
라는말들어본적도있다 하...
스크랩
1등먹었다!
2시간 ㄷㄷ
수식이라서 오래 걸린…. 국어보다 수학이 훨씬 쓰기가 어렵네요…
큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다!
앞으로 수학도 열심히 써보겠습니다,, 아직은 부족하지만 성장하겠습니다..!
유용하게 잘 쓸게용
사인법칙에서 예시 들 때 각 ADB 아닌가요?
헉 어디죠??
아아 찾았어요!
개추!
다 바꿨어여
더욱 정진하겠습니다
도형이 좀 그렇죠 ㅠㅠ
선생님 좋은 칼럼 감사합니당 ㅎ 중등기하를 위해서
합동 닮음 원의성질 중등문제 푸는 건 어떻게 생각하시나요!!
중등 문제는 제가 하듯이 단계를 밟으면 대개 눈으로 풀립니다. 그러니 눈으로 슥슥 풀 수 있을 정도가 되도록 중등 문제를 풀며 저 논리구조를 학습시키는 것도 좋은 방법 중 하나라고 말씀드릴게요..!
순공적립.
훌륭하네요. 이런 자료 준비하는 것은 수험생활의 정리인지 궁금하네요.
수험 생활할 때 고3 때까지 소위 말하는 대치동 학원 같은 걸 다녀보질 않아서 혼자 공부하는 시간이 많았거든요.. 그 때 얻은 것들을 공유하면 조금이라도 다른 사람들 공부가 쉬워지지 않을까 하는 측면에서 하기 시작한 일인데, 실질적인 도움이 되면 좋겠습니다... 나름 거창하게 말하면 교육평등을 이루고 싶어서이고, 간단히 말하면 잘난 척이죠...ㅎㅎ,,
훌륭하다고 해주신 칭찬 감사합니다!!
역시 선한 영향력 가진 분이시네요. 감사하게 잘 이용하고 응원할께요.
읽어주시고 이상한 점 있으면 바로 수정할게요..! 수학은 써보니 좀 어색하네요 ㅜㅜ
칼럼에서 쓰신 논리 순서가 제가 도형 외에도 킬러 문제가 막힐 때 접근하는 방법과 굉장히 비슷한 거 같네요.
삼각함수의 극한 문제에서 도형을 해석한 후 답으로 도출하는 과정만 남았을때,
극한값을 구하는 식이 너무 복잡해지면
도형을 다른방식으로 다시 해석하시나요 아니면 억지로 구해버리시나요?
네 꼭 찾아 가겠습니다 ^^7
와…지렸다….
깨달음이 있으신 것처럼 보이는데 그 깨달음이 본인에게 온전히 흡수되시길 바라요..!
감사합니다 ㅎㅎ
독존넴 질문이 있습미다 이게 도형 전범위를 다루신거죠?
수1 도형입니다..!
네넹 수1도형 삼각함수 뒤에나오는 그부분 전체용
수열도 해주세요
네..!!
헉... 개쩐다 이대로 무등비까지 올려주시면 도형은 다 족칠수있을듯..
무등비는 삼각비로 다 풀리죠 준비할게요 ㅎㅎ
항상 도형문제를 직관으로 풀어서 고민이었는데 감사합니다 정독하고 이제 적용해볼게요!
ㅇㄷ
잘 읽었습니다 감사합니다