쌉선비 vs 날라리 테스트
안녕하세요.
상승효과 이승효입니다.
성적이 안나오는 학생들에는
두 가지 패턴이 있습니다.
1. 문제를 너무 선비처럼 푸는 학생
2. 문제를 너무 날라리처럼 푸는 학생
당신이 선비라면
문제를 좀 대충 풀어보세요!
선비테스트 한번 가보죠.
선비테스트1) 2023학년도 6평 5번
등비수열이니까 보자마자
이런 식이 떠올랐다구요?
아니 떠오르기도 전에
일단 손부터 움직이나요?
네, 당신은 쌉선비..? ^^
그냥 대충 풀어보세요.
이런건 공비가 대충 정수....
더해서 3/2라구?
문제를 째려보세요.
답이 보입니다.
아,, 공비가 2면 되네??
a2가 1/2이고, a3가 1이면
잘 맞아 떨어지는구나~ 아하하 ^^
선비테스트2) 2022학년도 수능
인티그럴 쓰기 시작했다면
당신은 선비.
날라리들의 생각은?
곡선과 직선이 만나는 점은
x가 0과 6일때입니다.
직선 슥 그려서 반띵해야 하니까?
아, 대충 생각해보면
x=3 이구나~ 아하하 ^^
선비테스트3) 2022학년도 9월
a와 b, 미지수가 두개니까
지금부터 연립들어간드아!!!
네, 선비 한명 추가요.
대충 풀어봅시다.
그래프를 째려보니까
B의 x좌표가 A의 x좌표의 5배네?
그럼 OA의 기울기가 OB의 기울기의 5배?
곱이 5/4 라고???
대충 집어넣어보면
OA기울기가 5/2고, OB의 기울기가 1/2이네??
넓이 이용하면 a가 나온다~ 아하하 ^^
선비테스트4) 2022학년도 6월
등차수열의 합공식? 일반항??
네 선비 맞습니다 맞고요.
대충 봐서
a6 = 2 a3 니까 a0 = 0이네?
원점 지나는 직선같은 등차수열이네??
첫째항이 2 니까
2 4 6 8 10 12... 이렇게 가겠네??
ㅇㅋ,,,
1부터 10까지 대충 더한다음에
곱하기 2 가즈아~ 아하하 ^^
선비테스트5) 2022 예시문항
자,,, 일단 함수 |f(x)| 부터 구하고~
식을 써서....
넵. 아나타와 선비데쓰.
대충 푸세요 대충
연속이니까 연결되어야 하고
a 위아래에 집어넣으면 같을리가 없네??
그럼 a위아래에 집어넣은거 더해서 0이네??
아... 2a-1=0 이네?? 끝!... 아하하 ^^
많은 학생들이
시험장에서 사고가 유연하지 않아요.
그냥 보기만 해도 보이는 문제들도
일단 식부터 쓰려고 하고
외운 공식 적용하려고 하고,
사고를 하려 하지 않습니다.
당신이 선비라면 대충 푸세요.
그래야 성적이 오릅니다.
물론, 대충 푼 답은 그게 맞는지
검증을 하고 넘어가야 합니다!!
다음은 2번 패턴. 날라리.
선비와는 정반대죠.
너무 대충 푸는게 익숙해서
식세우는게 안되는 학생이 있습니다.
당신이 그런 학생이라면
지금부터 선비가 되어 봅시다.
선비의 필수 아이템은 갓!
...
이 아니고 교과서입니다.
자, 이번엔
날라리 테스트 가즈아!
이런 조건을 보면 뭐가 떠오르나요?
네 절댓값 나오면 "접어 올린다"
미분불가능하면 꺾여서 "첨점"
국룰이죠~ 날라리의 대명사!
자 그러면 이제
선비가 되기 위해
교과서를 한번 보겠습니다.
미분가능하지 않다?
아 이런걸 미분가능이라고 하는군요.
그럼 이 문제에서는 함수 f(x) 대신 |f(x)| 이고
a대신 1이니까, 그대로 써보면
이런 뜻이군요.
이정도만 되도 어질어질한가요?
ㄴㄴ 선비는 이걸로 끝나지 않습니다.
존재하지 않는다?
존재가 뭐지????
이번에는 교과서에서 "존재"를 찾아보자.
아하.
두 값이 같지 않을때
"존재하지 않는다"고 하는군요.
이제 선비의 답이 나왔습니다.
이걸 식으로 표현하면
이렇게 되고
다르게 표현하면
이렇게 되겠구나... 아하하 ^^
예전에 킬러 3문제 빼고 다 쉽던
27+3 시절에는 이런거 몰라도 됐어요.
도구 몇개만 잘 정리해서
문제를 대충 풀면 됐습니다.
날라리의 전성기가
2014-2017 이었죠.
그런데 이제는 수능이 그렇지가 않습니다.
정확히 알지 않으면 틀리는 문제가
점점 많아지고 있습니다.
선비가 되기 위한 길은 험난해요.
아마도 이 칼럼을 보고 나면
대충 풀기만 기억에 남을거고
뒷부분 내용은 잘 기억에 안날거에요.
수학 가르치는 사람들이나 이거 보고
오,, 그러네,, 할 가능성이 높죠.
성적을 올리고 싶으세요?
그럼 두가지를 같이 병행해야 합니다.
날라리 + 쌉선비 = 날선비가 되자
어느 한쪽에 치우치면
성적을 올리기 힘들어요.
이번 칼럼은 여기까지 하겠습니다.
유튜브 "이승효의 상승효과"도
구독 부탁드리고요.
궁금한 점은 댓글주세요 :-)
[광고]
오탈자는 마감되었고
이제 4를 위한 이삼이가 시작됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
간첩 싫어하시네 20 30들이여 깨어나라!!
-
곧 오티네 0
오티 옷 다 준비해놔서 마음은 편하지만.. 본가 내려오자마자 과외하러 가야해서 그게 더 신경쓰임ㅠ
-
공부함
-
버스안에서 1
나는매일학교가는버스안에서항상같은자리앉아있는그녈보곤해하지만부담스럽게너무도도해보여어떤말도붙일자신이없어
-
퇴소?
-
외모나 사회성이 필요없는 게임이기 때문에 계속 여기로 도피하게됨
-
재수학원에서 11
선배와의 만남 이런 거 할 생각 있냐고 물어보시네 가도 해줄 말이 없는데
-
고1은 뭐부터 가르쳐줘야하냐... 6분걸려서 다 틀리고 중학교때 듣기도 반타작 했다는데..
-
아니 시대재종 아이패드만 된대서요 애플관련 써본적이없습니다
-
강기분 듣는데 솔까 강의 계속 같은내용 반복이고 해설인데 편당40분 개오바아님??...
-
어디가 나아여 공대는 건축
-
생2 지금 개념하고 있어서 기해분은 4월은 돼야 풀거같은데 이거 지금 사야함? 품절 빨리 됨?
-
수능잘본기만충들ㅅㅂ 10
니들이 갑자기 국어 ㅈ박은 n수잡대생의 설움을 아냐?
-
ㅡㅡ
-
입시학원에서 오늘따라 계속 근처 사람들이 나 흘깃 보고 밥 먹을 자리 많은데...
-
새터전 밥약? 10
긍데 원래 이렇게 연락오는거 맞음?
-
잘본적이없으니까.
-
연고대 못가서그런가
-
노미현은살아있다 4
근데뭐
-
최종적으로 다른데 등록할거같으면 기숙사 신청 안해도 되죠? 일단 학교 등록은 해 놨어요
-
지하철에서 오르비를 맘놓고 못하네 에휴이
-
I get too comfortable with you 9
get too comfortable, yeah
-
그 이후부터 그렇게 된듯 이제부터는 안쓸게요...
-
이제 점심먹으러나갈때 저녁도 사오기로함 너무 귀찮다..
-
잇올 0
오늘 상담 받고 왔는데 잇올 앱 회원가입을 안 시켜주셨습니다.. 옛날에 해서 나중에...
-
에휴다노… 수특이나 빨리 좀 풀어야지
-
. 1
-
특히 에일리언 오댕이 레어는 진짜 안됨뇨
-
CPA희망하는데 경희대 국캠은 어문이고 부산대는 경제학과라면 님들 어디감? 본가...
-
강의 반복 정독을 더 해야하는건지 ㄹㅇ노베한테 김준쌤이 어려운것인지
-
캬
-
고1때 한능검공부 빡세게 해서 1급 딴 이후로 고1부터 고3까지 모고 한국사 1등급 놓친적이없음
-
응
-
너무졸리네 1
좀만 잘까..
-
위에게 전에거임
-
1+1+1+1.... 이 제일 빠른 경우는 2017 수능 27번 격자 좌표 딱 4개...
-
메가스터디 광고도 아니고 강민철 광고임 ㅋㅋㅋㅋㅋㅋ 못 넘긴다 캬
-
목시 방동진 or 박준호.. 3월부터 들을거라 첫 커리 날리는데 이러면 구림뇨?...
-
근데 일년더하긴 싫음 그래서 안할거임
-
ㅇㅇ 닉네임 보통 실명틱한 가명으로 하는 편인데 오르비는 별생각없이 영린7함 주로...
-
60억이 아니라 이젠 80억 지구야...
-
불편해하시는분들 많나여?
-
대체 여기서 존나 선동하면서 가입일 15년전 이런새끼들은 뭐임? 10
어떤 특정 학과나 직업같은거에 목매여서 계속 까거나 찬양하고 그러거나 정치글이나...
-
유튜브 보면 2,3년전까지는 수업할때 엄청 웃으시고 썰도 자주 푸시던데 올해...
-
재수를 생각하고 있는데 국어, 수학을 어떻게 공부해야 할지 몰라서 여쭈어 봅니다....
-
키는 작은데 10
진하게 생겨서 하나도 안 어울리네 키라도 크든 여리하게 생기든 했음 좋았을텐데
-
골라보세요
-
잘쓰세여 ㅎㅎ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
역시 풀기 전에 좀 노려보는 건 진리네요그리고 날라리 파트를 보고 작년9평이 떠올라버린..
맞아요. 노려보는건 중요합니다! ㅎㅎ
5번제외 선비처럼 풀고 있으면 잘하고 있는거...아닐까요
저러다 실수나면...클나요..
네~ 맞아요. 꼭 저렇게 풀어야 된다는 뜻이 아니에요. 실수하면 큰일나죠.
그런데 4점짜리 어려운 문제를 풀다 보면, 저렇게 대충 "이거 아닌가" 때려 맞추는게 정말 중요합니다. 그래서 평소에도 눈으로 보면서 문제를 날라리처럼 풀어보는게 필요해요.
5번을 트리핀교수님이 날라리처럼 푸는걸 보면, 누군가는 과하다고 느낄거에요. 근데 님은 대충 푸는게 익숙하니까 더 빨리 풀죠? 그걸 선비처럼 풀라고 하면 "굳이 왜??"라는 생각이 들거에요. 1-4번도 마찬가지입니다~ 익숙해지면 실수도 없고 시간도 빨리지거든요.
![](https://s3.orbi.kr/data/emoticons/dangi/032.png)
익숙해서 안틀릴수만 있게 된다면 킹정입니다날라리로 풀고 자꾸 불안해서 선비처럼 식으로 검증하는 습관은 어떻게 해야 할까요 요즘 날라리처럼 먼저 관찰하는 훈련은 하고 잇는데 불안해서 식을 작성하게 되더라구요..
가장 베스트는 두가지로 확인하는 거지만, 사실 1번같은 너무 명백하기 때문에 식이 필요 없는 경우도 많아요. 직관으로 풀면서도 확신을 가지려면 그만큼 개념이 탄탄하는데, 2번 차함수 이용하는게 대표적인 예라고 할 수 있겠네요 :)
항상 실모에서 시간이 부족한 저한테 이번 칼럼은 정말 인상깊네요... 눈으로 문제를 관조하는 능력은 어떻게 기르면 되나요?
만약 식으로 풀었다면, 답을 아는 상태에서 문제를 다시 보면서, 이 답이 무슨 의미가 있는걸까를 다시 생각해보는게 도움이 될 수 있어요. 예를 들어, 1번을 식으로 풀었다면 공비가 2가 나왔으니까, 이걸 내가 처음부터 볼수는 없었을까? 혹시 다른 문제도 그런게 아닐까? 검토를 다시 하는거죠.
3번빼고 다 선비로 풀었네욬..,;
제일위에예시5문제중에서 3문제 날라리처럼풀고 2문제 선비처럼풀었네요... 선비처럼푸는법도 좀더 단련시켜야될까요..???
둘다 중요하긴 한데, 등급대에 따라서 중요도가 다르긴 합니다.
논리적인 비약을 만들지 않으면서 계산을 깔끔하게 할 수 있는 방법을 찾아야되는데 그걸 못하는 사람(선생님들 포함)이 너무 많은듯 아 물론 나도 포함
선비테스트는 1번빼고 다 날라리처럼 풀긴함
뭐야 다들 선비처럼 푸는 거 아녔음? 그래서 시간부족으로 2등급인가
웃긴점-> 날라리처럼 풀라하면 선비처럼 풀고 선비처럼 보라하면 날라리처럼 보게 됨
쌉선비처럼 푸는 걸 좀 고칠 필요가 있다고 하신 것은 좀 그러니까 문제를 풀때 생각을 좀 하라는 말씀도 약간 포함되는 느낌이지요?
네 그게 많이 포함된거죠~
항상 선비처럼 접근하려하다 주변에 날라리 ㅋㅋㅋㅋㅋ 풀이를 쓰는 친구들이 많아서 점차 둘을 함께 썼던 것 같네요 좋은 글인 것 같아요!
감사합니다 ^^
선생님 글 진짜 잘쓰시네요~~
오랜만이네요 석준쌤 :)
칼럼 ㅆㅅㅌㅊ라 엄청 도움됐는데요? 처음입니다
잘됐네요! ^^
쌉 날라리를 하고 있었내요 항상..ㅋㅋ