1.절대값안에 루트 미분가능성2.다변수함수(9월 29번 문제같은)
혹시 저 두개 관련 설명 잘 되어있는 강의나 적용되어있는 문제 아시는분 계신가요..?ㅠㅠ 아신다면 꼭 알려주셨으면 합니다ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
딱 10만 됐을 때 캡쳐하고 싶은데 자고 일어나면 10만 넘었을것같아서 슬프네
-
뻘글 아님) 3
고양이 2마리 vs 강아지 1마리맞짱 뜨면 누가 이기나요
-
풀이가 이해 못할거같아서 암기해야할거 같은데 어떡하죠
-
여장사진으로 오픈챗에서남자많이낚아봄
-
쌍사 하자 0
암기로 승부 1등급 쟁취!
-
난 일말의 희망도 없다고..
-
냥 2
냐앙
-
밀리의 서재에 1
월붕님의 나의 삼수일기가 있네요 한번 보고 싶었는데 운이 좋구만
-
하냥대 이름 냥처귀여움 10
냥대 ㄱㅇㅇ ㄱㅇㅇ
-
근데 아직 0
학교별로 26정시모집요강 안나오지않았나? 과탐 가산점이 3퍼인지 5퍼인지 어케알아여...
-
이럴땐 어떻게 해야할까요.. 애초에 한 활동이 독서 두개 엮기랑 토론한거라 다...
-
올해 4윌달에 150만원 씨드가 이렇게 되었습니다 토스 주식고수 뱃지도 받음ㅋㅌㅌㅌ 상위오퍼
-
아예 내 머가리 데이터만 로봇몸뚱이에 넣어서 살아보고 싶음 난 더 이상 신체적 한계가 없어지는 것임
-
에스파 윈터는 딴사람한테 가려져서 잘 못봄ㅠ 닝닝이 제일 실물파고 지젤은 회면이랑...
-
속보 윤석열.. 5
투표 ㄱ
-
텔그 39퍼면 1
스나로 질러볼순 있을까요 정시상담 받기전에 어느정도는ㄴ 생각해놔야해서
-
아,, 우울 8
-
진짜 연애하고싶다
-
너무 진부한가용… 루이스구조+vsepr 이론 해서 구조 이해하고 물리적 성질과...
-
처음 생1 할 때는 지금처럼 어렵지 않아서 대충 해도 1이었음 그러고서 과외 계속...
-
막상 조정 오면 스캠같아서 못 사겠어요ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 상승장에는 코인이 좋아...
-
오만할 수도 있지만 현역따리라도 한번에 가보도록 하겠슴다
-
친자컴퓨터를 절대 이길 수 없음 그냥 ㅇㅇ
-
휴릅 6
3월 더프 치고 올게요~~!! 잘 있어요! +) 옯스타는 출몰 예정
-
수학공부할때도 n제 문풀아니면 하기가 싫고 오답도 해강은 정말 보기싫고 해설지만...
-
오르비언들 물 드세요 13
-
영어 내신 2
유학파라서 수능&모고 기출 풀 때 빈칸 순서 다 맞거나 한 개 틀리고 가끔식...
-
오르비 가입하고 손 미끄러져서 눌러진 곳이 하필 복권이었음 이젠 오기만 남음
-
그냥 해설보면서 논리 배우고
-
국어는 모고보면 2등급 초에서 3등급까지 왔다갔다하는데 문학이 진짜 약해서 시는...
-
읹,ㅇㅉ짜증 1
왜 인증 나만 못 봐 맨날 왜 다 나 빼고해 화날려해 나
-
하... 님들 고백함 11
저는 사실 '테슬라 숏'에 넣었습니다 월요일 6시 안에 ㅈㄴ 쏠 거 같은데 불안해요
-
폰 안보면서 화면켜진걸로 시간 뻥튀기된거 아님
-
피자 먹을까 0
피자는 만들어먹기도 애매함
-
이왜기 5
아니이게왜기만이냐고이놈들아
-
성대 자과계 0
성대식 652중반인데 자과계 가능한가요? 추합권이라고 생각하고있긴한데
-
이쯤에서 학력 15
집안에서 제일 좋은 학력이 다들 어떻게 되시나요? 궁금해서
-
인원 더 들어온다고 해도 안정 맞죠..? 어제 변표 나오고 훅 밀리는 중이라 ..
-
좀 구리다고 생각함;
-
사탐으러 대학가기
-
1. 라미네이트 없다는데 이거 인강볼때도 많이 불편한가요? 2. 라미네이트 없는게...
-
정말 아무 것도 아닌 날입니다.수능 끝난지도 한참,성적표 나온지도 한참,수시...
-
저능해서 울엇어 5
큿소오옷 자러가야지
-
나중에그리워할거면 아니왜헤어졌음뇨 나만이해안되뇨잇
-
셋 다 붙으면 어디가 나음? 동생 반수 예정이긴함..
-
올해 백분위 88이긴한데 수학말고 딴게 다 4여서 반수마려움요, 근데 다른과목은...
-
마실꺼 줄 사람
루트 미분가능성 다변수 함수 담금질에서 다루긴 하던데.. 루트 미분가능성은 확실히 좋다고 느꼈는데 다변수 함수는 좋긴 한데 뭔가 부족한 느낌
근데 절댓값 안 루트가 아니라 루트 안 절댒값이죠??
일단 루트 안 절댓값꼴 함수의 미분가능성
1)절댓값꼴 함수가 미분 불가능한 곳에선 미분 불가능
2)미분 가능하면서 0보다 큰 구간에서는 무조건 미분 가능
3)x축과의 교점을 가질 때 그 x좌표를 a라고 하면 lim(x->a) 원래 함수/(x-a)² = 0이면 미분 가능
헐 잘못쓴거 맞아요ㅠㅠㅠㅠ 진짜 감사합니다 정말 죄송하지만 혹시 3번은 미분계수 정의 활용해서 좌미계 우미계 비교해서 같다고 놓고 둘이 부호만 달라서 한변으로 넘겨서 나온 결과인가요..??
비슷하긴 한데 좌미계 우미계 비교했을 때 부호가 반대이니 결국 같으려면 0이 돼야만 해서 그래요.
네넵 덕분에 뭔가 정확히 잡힌것 같아요..! 정말정말 감사합니다!!ㅠㅠ
뉴런 미적분 좋아요
아 사실 시간 부족해서 풀다 말았었는데 꼭 좀 봐야겟네용ㅎㅎ 감사합니다 !!
전자는 안나올 확률이 매우 높음
근데 기코 미적에 싹 정리해주히는 부분 있음 루트 미가성 케이스별로 판단하는거 킬러문제로
후자는 킬러코드에 도배돼있음 그리고 다변수함수는 ㄹㅇ 아무 생각도 안하고 관계식 찾고 최대한 식 관찰하면서 간단하게 처리하는 연습이 중요! 킬코 미적에 그런거 많음
정성스럽게 알려주셔서 감사합니다ㅠㅠㅠ 꼭 잘 보고서 보완해서 마스터 해보겠습니다 !!