2022학년도 고3 10월 미적분 30번 해설
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사 칸수 0
지금 고대 문과가 전체적으로 짠가요? 텔그와 진학사가 괴리가 있네요... (지금 이...
-
저격1합니다 4
헤으응,,
-
풀이도 올리겠음(아무도 안보겠지만) 그렇게 안보이겠지만 일반화학 잘했었음
-
저격합니다 4
경기부엉이라고 맨날실모호머짓하던놈있었는데 수능개처망했는지 수능끝나고안보임
-
하논술에미적 0
제발조금나오면좋갯다제발제발제발제발
-
치 약 수 랑 자연대 정도인가요? 공대는 다 안되는거임?
-
제가 올해 수능78점 맞았는데 집안 형편상 내년은 어렵고 1년뒤에 알바해서 재수...
-
열릴법 하지 않음?
-
느좋이란 말 4
왤케 패드립 같냐
-
ㅇㅇ
-
저격메타라 0
간만이군요
-
저격 메타임? 2
나도 그럼 으흐흐
-
오르비 귀염둥이님....
-
대구, 춘천 있다는데 대구가 비율상으론 영어를 안봐도 은근 영어를 많이본다는데 이게...
-
저격메타라니요 2
추억이구만
-
바보! 5
-
밤에 번쩍번쩍 퍼레이드 하는거
-
미적 한 번도 안해봤고 내신때문에 미적 해야하긴하는데 미적도 하고 기하도 하면 좀...
-
학교가려햇는데 6
수시면접이라 통제당함 ㅜㅜ 매운음식추천점
-
저 격합니다 3
-
저격합니다 1
서성한.. 스나이핑할래요..
-
해적왕이 되고싶어요...
-
시간 빠르네 올겨울에는 또 무슨 챌린지가 유행하려나
-
더 불타올라라
-
남자답게 글삭하지마라 선적분조지고온다
-
저격메타 뭐노 1
오르비의 활성화 환영합니다 더욱 가열차게 저격메타를 굴려봅시다
-
면접은 모레부터 준비한다!
-
메인글 댓글 2
동덕여대 이슈에는 어김없이 ㅋㅋ
-
졔수질문 1
올해수능본현역인데 제가 공부를 좀 늦게 시작해서 국어도 여름방학때 시작하고...
-
올해 6평 성적은 이렇게 받았습니다. 수학은 6평때 100점이라 생각했는데 14번...
-
야야 잠시만 기다려봐 18
밥먹고왔더니 이게뭐야.... 미필6수, SII 3년다닌 한양대공대 반수생이...
-
25 지1 4페이지는 역대급이다.... 거를 타선이 없네
-
작년엔 아무나봐도 입떡벌어지는 성적들이었는데 올해는 뭔가 오히려 성적 낮은애들이...
-
저메추 0
-
오늘 먹고 자기만 함 11
-
EMP ㄷㄷㄷ
-
촌놈이어서 강남 가는김에 점심에 맛있는거 좀 먹고 산보 좀 하는데 가볼 곳이나...
-
일거라 믿어요............ 문학부터 잡아보자.......
-
역사 등급컷 불평한 내가 부끄러워질정도네 과탐 진짜 ㅈㄴ 고였네 N제+실모만 기본...
-
좀 옛날 졸업생이어도 내신 비슷하게 반영하나요? 학생부가 많이 달라진걸로 알아서.....
-
올해 모의수능 낮은 2등급 정도 나오는 베이스입니다. 김범준쌤 괜찮아 보여서 풀커리...
-
료가고싶다 `~~~
-
미국 가고싶어요 ㅠㅠ
-
수능 전에 산 제노 챌린지 샤프가 불량이라 모래주머니 참
-
풀이 방식은 따로 없고 그대로 읽고 그대로 푸는 느낌입니다 학원에 숙제로 모의고사...
-
그니까내일7시에일어나야하지만 지금피곤하니까카페인을빨게요.몬스터딱대
-
이분의 성씨는 金씨입니다만?
-
아는 50중 원 버리는사람 진짜 겁나 많은데,특히 화학은 50일수록 더 버리는...
-
.... 진짜 난 왜 잘하는게 없을까
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)