곱/몫/합성함수 미분법 증명 by 미분계수의 정의
해봅시다.
우선 이건 도함수의 정의입니다. 미분계수의 정의를 일반화하는 식으로 우리가 공부했었죠!
<곱의 미분법>
미분가능한 함수 f(x), g(x)에 대해 f(x)g(x)의 도함수를 구해봅시다.
우리는 함수 f(x), g(x)가 미분가능함을 알고 있기 때문에 아래의 두 극한이 수렴함을 알고 있습니다.
그럼 이를 활용해서 lim를 분배해볼 생각을 할 수 있으니 극한식의 분자를 다음과 같이 조작해봅시다.
그럼 이렇게 식을 정리해볼 수 있겠고
이제 각각이 수렴하니 lim를 분배해주면
다음과 같이 수렴할 것입니다.
곱의 미분법 증명 끝!
<몫의 미분법>
미분가능한 함수 f(x), g(x)에 대해 f(x)/g(x)의 도함수를 구해봅시다. 참고로 이는 수학2에서는 나오지 않고 미적분에 나옵니다.
뭐 일단 아까와 마찬가지로 f'(x), g'(x)가 존재함을 아니 이를 활용하기 위해 식 조작 해봅시다. 분모 분자에 g(x)g(x+h)를 곱해주면
이렇게 됩니다. 이제 극한식 써먹기 위해 또 분자에 식 조작을 해주면
여기서 이렇게 묶어줄 수 있겠죠
그럼 이제 각각이 수렴하니 lim를 분배해주면
다음처럼 수렴함을 알 수 있습니다.
몫의 미분법 증명 끝!
<합성함수 미분법>
실수 전체의 집합에서 미분가능한 함수 f(x), g(x)에 대해 f(g(x))의 도함수를 구해봅시다.
마찬가지로 f'(x), g'(x)가 존재함을 아니 활용하기 위해 식 조작을 해봅시다. g(x+h)-g(x)를 나누고 곱해주면
말이 헷갈리니 잠시 x=a에서의 미분계수로 바라보면
함수 f(x)와 g(x)의 정의역 내의 임의의 실수 a에 대해 함수 f(x)는 x=g(a)에서 미분가능하고 g(x)는 x=a에서 미분가능하니 우리가
이렇게 lim를 분배할 수 있음을 알 수 있죠. 다시 말해
로 lim를 분배할 수 있을 것입니다. 그럼 왼쪽의 식은 점 (g(x), f(g(x))와 점 (g(x+h), f(g(x+h)) 사이의 평균변화율의 극한이니 x(독립변수)=g(x)(상수값)에서의 f(x)의 미분계수를 의미하고 오른쪽의 식은 점 (x, g(x))와 점 (x+h, g(x+h)) 사이의 평균변화율의 극한이니 x(독립변수)=x(상수값)에서의 g(x)의 미분계수를 의미하겠죠! 즉, 정리하면
가 될 것입니다. 합성함수 미분법도 증명 끝!
자 이렇게 고등학교 교육과정에서 마주하는 미분계수의 정의를 통해 증명 가능한 세 가지 미분법에 대해 알아봤습니다. 특히 확률과 통계 선택자 분들 중에 증명 과정 없이 결과만 외우며 학습하시는 분들이 많다 느껴서 이 글 확인하시고 적어도 곱의 미분법에 대해서는 증명 과정을 익혀두시면 좋겠습니다. 몇 번 따라해보시고 반복 학습을 통해 스스로 유도해보면 어렵지 않게 기억하실 수 있을 거예요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
흠
-
오류난줄; 10
-
둥근 보름달 0
진짜 ㅈㄴ 동그래
-
수열이나 삼각함수 그래프가 제일 쉬운것같은데
-
떨어지네 얼탱이가 없어서 글쓴다
-
평가원 #~#
-
24 9평 93->24수능 80 25 9평 95->25수능 80인데 수능장에서...
-
고대 교과우수인데 내신점수가 진학사랑 메가가 달라요 ㅎㅎ 근데 메가가 소수점 없이...
-
정시 공부는 초중고 내내 써먹던 공부방식 이랑 조금 다르다고 갠적으로 느꼈는데...
-
합격할 수 있을까요??
-
이제 대학 입학하는 새내기입니다.본가에서 가는데 2시간 정도 걸리는 대학에 가게...
-
지렛대 효과로 견과류, 쥐포 쉽게 우적우적 씹을수있음 ㅇㅈ?
-
궁금해서 투표 올려봅니다
-
24아이디어 비닐도 안 뜯은 수1수2있는데 26아이디어랑 많이 다른가요?
-
2월 7일날 발표 나온다하면 신입생 환영회나 ot같은건 언제쯤함? 2월 완전 말이나 그때 하나
-
깡춍!
-
인하대 인문자전 2
점공 안들어온 200명은 어느정도일까요......?다 안정권일것 같나요..?
-
미적언매화1생1 할거같은데 현우진 뉴런부터 시작해도 괜찮을까? 그리고 백호 섬개완...
-
개념 공부할 때 어삼쉬사 같은 문제집을 같이 끝내고 실전 개념으로 들어가나요,...
-
빵난거 일수도 있을까요?
-
수학 선택과목 노베수준이면 어떤게 제일 나은가요?
-
4점만 모아둔..
-
친구들이랑 10시간 드릴 하루컷 이딴거 하던 습관 못 버려서 흠 200쪽? 이틀 컷...
-
수2 적분퍼즐 0
미적은 있는데 수2에는 적분퍼즐 기출된 적 있나요?(교사경 포함)
-
낙지등수 실제등수랑 거의똑같다고 보면 됌?
-
어차피 졸업하고 cpa 변리사 이런거 준비할거면 초장부터 그나마 젤 잘하는 수능이나...
-
당당하게 밝기 최대로
-
ㅈㄱㄴ
-
날자. 날자. 한 번만 더 날자꾸나. 한 번만 더 날아 보자꾸나.
-
일반인으로 남기 아까운 실력이라고 유튜브나 오디션 봐보라함!! 수능 망치고 자존감...
-
군대 전역한 n수생인데 메가스터디 들을려고 하거든요 근데 메가 시발점 말고 뉴런부터...
-
안녕하세요. 예비고2입니다. 제가 지난 일주일 동안 국영수 하루 분량을 정해놓고...
-
어삼쉬사 풀고있는데 이게 10문제가 있으면 수1 특히 지수로그쪽이 3문제정도가...
-
사수생들 집합해라 19
왜 사수하냐 안 힘드냐
-
넣으면 붙을까요?
-
후자가 맞겠죠?
-
학벌위조 안하고 가만히 있으면 아무생각 없음?
-
시대인재 대전 수학 다니려고 하는데 강사 추천 햐주세요
-
그리고 날짜도 2월 9일인가 그러던데 추합으로 붙는 사람은 어케 보나요??
-
싱글벙글하다가 으악!
-
'엔숏 2배' 가즈아~ 13
헤헤헤헿 게임 재밌다 도파민 터진다 엔비디아 더 내릴 거 같은데요? 지옥 가즈아~
-
서성한뱃보다 건뱃이예쁨
-
홍대는 전통 공대이기도 하고 동국대는 딱히 뭐가 유명하다 그런 건 못 들어봤는데 왜 홍대보다 위죠?
-
통통이 수학 하 2
수학 하 파트 순열 조합 합곱 법칙이 뭔지만 아는 수준이여도 ㄱㅊ? 문제까지...
-
앙 1
수분감 내용 복기하고 기억안나거나 안풀릴것같은거 싹다 풀어야겠다
-
W관 위치 뭣같네 11
한티역에 내리면 너무멀어..
-
50만원 포함 메가패스를 결재 했으면 20만원만 다시 환불하는 것도 가능한가요?
-
김장겸 "나무위키 등 규제 사각지대 해외사이트, 논의 시작해야" 10
[데일리안 = 남가희 기자] 김장겸 국민의힘 국회의원이 '해외사이트 투명성·책임성...
합성함수 미분법 증명 틀렸어요..
1. f(g(x+h))를 f(g(x+h)로 표기했던 것 수정했습니다
2. 미분가능한 함수 f(x), g(x)라 할 때 일반적으로 정의역을 실수 전체의 집합으로 잡는데 '실수 전체의 집합에서'라는 워딩을 추가함으로써, 함수 f(g(x))의 g(x)=g(a)에서의 미분가능성을 조사할 때 'f(g(x))를 정의한다'는 표현을 명시하지 않은 부분이 문제 될 수 있음을 고려해 g(a)가 f(x)의 정의역에 포함되지 않을 수 있는 경우를 배제했습니다.
감사합니다!
아뇨 근본적으로 틀렸습니다.. 많이들 하는 실수긴 해요 이거
g(x)가 x=a를 포함한 어떤 열린 구간에서 상수함수일 때 g(x+h)-g(x)=0이기에 본문의 과정처럼 식을 조작할 수 없음을 말씀해주신 건가요?
이외의 증명 과정 자체에는 문제가 없습니다. 고등학교 미적분에서 합성함수 미분법은 저렇게 g(x+h)-g(x)를 나눠주고 곱해준 후 각각의 평균변화율이 수렴함에 따라 lim를 분배하는 방식으로 증명합니다. Essential Calculus Early Transcendentals: Metric Version 2nd edition International Edition by James Stewart 에도 y=f(g(x))를 y=f(u), u=g(x)로 바라본 후 lim를 분배하는 방식으로 설명하고 있습니다.
고등학교 미적분에서 주로 다루는 대부분의 미분가능한 함수의 경우 특정 구간에서 상수함수일 때가 없기 때문에 위와 같이 증명을 보였는데, 말씀하신 것처럼 엄밀하게 합성함수 미분법 다시 말해 연쇄 법칙 (chain rule)을 증명하려면 아주 작은 오차 입실론_1, 입실론_2를 잡아 설명해야하긴 할 것입니다.
스튜어트 칼큘러스도 체인룰 챕터 보시면 그 챕터 끝에 제대로 된 증명을 따로 소개 하긴 합니다.. 물론 전 스튜어트가 좋은 책은 아니라고 생각하지만 어쨋든 고등학교 교과서나 정석같은곳에 있는 증명은 틀린것이 맞습니다.
오 그렇군요... 감사합니다 하나 배웠습니다! 스튜어트 미적분학 연쇄법칙 뒤에 나오는 제대로 된 증명은 저도 처음 봤을 때 신기해서 익혀둔 상태였습니다. 위 답글의 마지막 부분에서 언급한 아주 작은 오차 입실론들을 이용한 증명이 이를 언급한 것이었어요, 다만 함수의 극한을 직관적으로만 정의하는 고등학교 과정에서 '오차'라는 개념을 갖고 오는 게 어려울 것 같다는 점과 위의 곱미분과 몫미분에서 미분계수의 정의에서의 식 조작을 통해 공식을 증명한 방법과 같은 방법으로 진행하고 싶던 점에서 본문과 같이 증명을 남겼었는데 잘못되었을 경우에 대해서는 생각하지 못했었네요 ㅋㅋㅋㅋ 감사합니다
증명이라는 것이 엄밀해야하는데 g(x+h)-g(x)=0를 고려하지 않았다는 점에서 증명 과정에 오류가 있다고 말하는 것이 적절하겠네요. 교과서와 한완수에서도 본문과 같은 방식으로 극한을 증명해둔 것을 확인했기 때문에 '고등학교 미적분 수준에서는' 크게 문제가 없다고 봐도 괜찮을 것 같습니다.
증명 대충 스케치 해봤어요
오 저렇게도 증명할 수 있군요!! 감사합니다 신기하네요 아래 말씀해주신 책도 지금 공부하고 있는 책 마친 후에 찾아볼게요
g가 분모에 가면서 오류가 발생하는 거긴 한데.. 제대로 증명하려면 극한에 대한 이해가 필요해요
Stephen Kenton The College Mathematics Journal Vol. 30, No. 3 (May, 1999), pp. 216 읽어보시면 재밌을 거예요.