[이동훈t] 6모 미적분 28번과 난문 출제 경향
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
요즘 입시판이
어수선한 가운데 ...
다음주 월(26일)에
최근 3년간 킬러 문제 발표한다며 ?
아주 또 ...
우리의 마음을 설레게 하는
빅 이벤트가 펼쳐질 텐데요 ...
킬러로 지목된 문제에 대한
다양한 해석이 난무할 것이고 ...
이건 하네 마네 ...
여기까지 출제되네 마네 ...
다른 과목은 모르겠고 ...
수학은 큰 의미 없는거
다들 아실거고 ...
교과서 (고1 포함),
평가원 기출,
교사경 기출,
EBS
이렇게 네 가지만 제대로 해도
1등급 문제 없거든요.
지금까지 그랬고 ...
앞으로도 그럴 거고 ...
아니 ...
지금 킬러 문항 관련 사교육 잡는 것도 ...
교육과정 안에서 충실하게 공부하면
즉, 교과서, 평가원 기출 제대로 공부하면
1등급 받을 수 있다는 말 아닌가요 ... ?
.
.
.
올해 3월 부터 대통령실에서
모의고사, 수능에서 킬러 출제하지 말라고
언급(더 나아가 오더)가 있었던 것 같고 ...
그런 맥락에서 6모 출제된 것인데요 ...
아하 ...
그런 맥락이 있었다면
미적분 28번이 왜 그렇게 출제되었는지
온전하게 이해가 되는거지 ...
그래서 오늘은 그 썰을 좀 풀어볼까 ...
그런데 뭐 ..
늘 그렇듯 ..
별거 없고 ...
내가 최근에 오르비에 올린 직전 글에서도
언급하긴 했는데요 ...
이번 미적분 28 번이
수능 출제에 있어서
어떤 변화의 흐름 속에 있는가 ...
그리고 그 흐름을 대표하는
문제일 수도 있다 ...
라는 생각을 해봅니다.
일단 미적분 28번 정답률 보실까요 ?
EBS 에서 가져온 건데 ...
실제 정답률(오답률)에서 아주 크게 벗어날 것 같지는 않고요 ...
순위 1 ~ 5 는 단답형 이고 ..
5지 선다 중에서는
13, 15, 28번이 엇비슷하게 정답률이 가장 낮고 ...
선택지별 비율이 아주 크게 차이나는 것은 아니여서 ...
찍어서 맞힌 분들도 많을 것으로 보이고 ...
5지 선다 중에서는 압도적으로 어려웠다.
라는 판단이 가능해 보이지요.
정답률만 보면 ...
26일 (월)요일에 킬러 예시로
선택될 수도 있어 보이긴 하는데 ...
만약 그렇게 되면 ...
출제자들이 좀 많이 당황할 수도 있다 ...
라는 생각이 듭니다.
왜 그러냐면 ...
28번 문제 다시 보면 ...
이 문제에 대한 풀이가 ...
(1) f(x) 방정식 유도 후 대칭성을 이용
[이동훈t] 2024 6월 28번 - 대칭성 풀이 (논리비약없음)
( 우리 대칭둥이들은 죄없다 ... 알제... ? )
(2) f(x) 방정식 유도 후 루트 안 초월함수의 최솟값 이용
(3) 사이값 정리 사용 후 좌, 우변의 최솟값이 같음을 이용
그 외에도 신박한 풀이들이 몇 개 더 있어 보이는데 ..
대충 3 가지 쯤으로 정리된것 같고 ...
나는 개인적으로 대칭성을 끝까지 밀어 붙인 풀이로 풀었는데 ...
그런데 f(x) 의 방정식을 유도한
(1), (2) 번의 풀이 모두
출제자가 열어둔 풀이이지,
권장 풀이는 아니라는
생각을 하게 된거지 ...
이번에 킬러 문항 사태를 보면서 말이야 ...
" 교육과정 외의 또는 지나치게 복잡도가 높은
킬러 문항은 배제 하면서도
난이도 변별이 가능한 문제만 출제한다. "
이런 식(?)의 오더가 있었던 거고 ...
(정확한건 26일에 가이드 나올거고 ...)
출제자 입장에서는
직접 출제 범위에서 더 꼬아서 출제하기 힘들어졌기 때문에 ...
간접 출제 범위 (중등, 고1)과 연계된 문제를
준킬러, 킬러로 출제할 수 밖에 없거든요.
이 경향성이 강화된 것은
제가 항상 얘기해 왔던 거고 ...
심지어 아래와 같은 글들도 쓴거고 ...
[이동훈t] 중등수학, 수학(고1)으로 다시 읽는 2022 수능 수학
[이동훈t] 중등수학, 수학(고1) 이 결합된 문제 다시 보기 (+2023 수능 수학)
아니 근데 ...
28번 이랑 고1 수학 이랑 무슨 관계이냐 ?
그게 또 (3) 번 풀이가 출제 의도인 것과 무슨 관계이냐 ?
이런 생각들이 들텐데 ...
저 문제에서 (가)를 보면 ...
여러분 ... 이차식이 포함된 도형들 ...
즉, 원, 무리함수, ....
교과서 본문 또는 연습문제를 보면 ...
정의역의 범위, 치역의 범위 구할 때 ...
실수의 성질 중에서
A가 실수이면
A^2 >= 0
이다. 라는 성질을 쓰게 되거든요.
예를 들어 원
x^2 + y^2 = 1
에서 x의 범위를 구할 때,
y^2 = 1 - x^2 >= 0 (즉, 양변 최솟값 모두 0)
-1 <= x <= 1
이때, 등호가 성립할 조건은 y=0 이다.
여기에 평행이동 결합시키면
도형
x^2 + y^2 + 2y = 0
의 정의역의 범위를 구하시오.
하면 ...
x^2 + y^2 + 2y + 1 = 1
(y+1)^2 = 1 - x^2 >= 0 (즉, 양변 최솟값 모두 0)
-1 <= x <= 1
이때, 등호가 성립할 조건은 y=-1 이다.
여러분 28번 (가)를 보면
딱 이 이차식 구조에
초월함수 붙인 거거든요 ...
그래서 미적분 28번은 ...
단순히 고1 수학이 간접 출제 범위로 결합된 게 아니라 ...
고1의 전형적인 풀이를 전체 풀이의 중심에 있기 때문에 ...
사실상 직접 출제 범위라고 봐도 무방하다고
나는 보는 거거든 ...
(28 번에서 초월함수의 최솟값 구하는게
어디가 어려운데 ...
직접 출제범위가 별거 아닌 문제인거지.)
내가 심지어 이런 글도 썼쟈나 ...
[이동훈t] 6모, 고1 수학은 사실상 직접 출제 범위 입니다.
이렇게 하면 별 것 아닌 문제 2개 결합해서
정답률 확 낮출 수 있으니까 ...
출제자들은 아마도 이런 지점을 노린거지 ...
EBS 오답률을 보면 먹힌거고 ...
28 번이 거의 3주 이상 논란이 된 이유도 ...
고1의 눈으로 바라보면 명쾌하지만
고3의 눈으로 바라보면 계속 찝찝하거든 ...
이거예요 ...
다른게 아니라 ...
(가)에서 주어진 등식의 양변에
+1 해서 완전제곱식 만드는게 ...
발상이 아니라니까 ...
고1의 전형적인 풀이를 적용한 거예요.
여기까지 생각을 하라는 거고.
여기까지 연습을 하라는 거지.
이게 쉬울까 ... ?
각자 생각들을 해보시고 ...
그리고 아래 문제도 좀 볼까 ?
아니 ...
솔직히 저게 어디 수학1 수열 문제야 ...
고1 도형의 방정식 문제지 ...
그런데 위의 문제와 달리
노골적으로 간접 출제 범위가
드러나지 않게 출제할 수도 있다는 거지 ...
지나치게 복잡도가 높은 문제를 출제하지 않아도
간접 출제 범위의 전형적인 풀이를 적용해야
빠르게 풀리도록 문제를 출제하면
된다는 것은 ...
뭐 ... 오래 전부터 출제자들이 사랑해왔던
방식인데요 ...
하 ... 이번 미적분 28 번처럼
풀이의 뼈대에 심으면 ...
잘 안보인다고 ...
.
.
.
뭐 .. .여하튼 ...
본문에서도 말씀 드렸지만 ...
교과서 (고1 포함),
평가원 기출,
교사경 기출,
EBS
이렇게 다 꼼꼼하게 하시면
시험 못보기도 힘들고요 ...
열공 하소서 ~!
ㅊㅊ
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 올해는 출시되지 않습니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 395정도까지 표본이 11등정도까지 오밀조밀 붙어있었음 그래서 여긴...
-
다소의역) 이전탑들은 자원을 투자해야 능력치를 낸다 0
??? : 자원이 투자되지 않은 상황에서도 최대한의 포텐셜..어쩌고..
-
초반 노래 분위기랑 후반분위기가 ㄹㅇ개달라서.. 개좋음
-
수능 그 자체를 목적으로 생각하면 왠지모르게 기대되고 즐거움
-
점공 좃망 ㅋㅋ 1
12명 중 12등 대성패스 사러감 ㅅㅂ
-
오늘은 할 일이 0
너무 많네요...ㅠㅠ 헤르미온느가 되.
-
지금 미적 강기원 공통 장재원 듣고 있는데 장재원쌤 과제 량이나 난도나 퀄리티는...
-
가령 공스타면 공스타끼리 친구추천해주는 느낌인가
-
오늘 하루도 힘차게 살아보자고!
-
확통 쎈b 풀려는데 1. 첨풀땐 딴데다 옮겨풀고 2회독할때 전문항을 다시품? 2....
-
좋아요 구독 부탁드립니다.
-
토-일-월 3일동안 1/6수강 => 18일완강 가능 => 1월에 끝
-
점공인원이 줄더니 내가 2등 올랐어 정말뭘까
-
퇴근했을때도 그렇고 나중에 계좌에 돈 들어오고나면 일하길 잘했단 생각이들어요 열심히하고와야지
-
이런
-
점공 그만들어와라 11
들어올거면 내 뒤로 들어와 미친놈들아
-
배꼽이 없단 걸 의식하고 걱정하지 않으려고 용을 쓰는데 뜻대로 안되는 주인공처럼...
-
매운거먹고싶다 8
속이 근질근질하구먼
-
같은 팀원들 점수 깎인다고 걱정해주던데 ㄹㅇ 착한 도람쥐임....
-
"부처를 만나면 부처를 죽이고, 조사를 만나면 조사를 죽일 것이며, 아라한을 만나면...
-
오늘 안 상식 2
베르무트는 와인이라서 냉징보관을 해야한다
-
알바가기 귀찬아 2
ㄹㅇ그냥 퍼질러자고싶음
-
낼모레는 가네
-
얼버기 5
-
이제 자러가야지 1
좋은 밤 되세요
-
하지만 잇올을 간당
-
ㅇㅂㄱ 9
-
5~6등급인데 션티 들으려고합니다.
-
밖에나가서 공부할라믄 돈이드니까 돈을 최대한아끼려면 집에서 공부해야하는데 집에서는...
-
얼버기 5
갓생 1일차.
-
얼버그 0
얼버그는 얼버기와 레버기에 잡혀먹는다
-
얼버기 4
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 4
부지런행
-
확통 미적 고민 10
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
전 게이가 아닙니다.
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 4
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
교과서 보시라는 분 오르비에서 처음 봄 굳입니다 ㅎㅎ
교육과정에 충실해야 한다는걸 사람들은 모르죠..
어어 개(수)세기는 안된다
아 ... 그것도 쓸려고 했는데 ... 수학1에서 수학적 귀납법 증명(+순열조합), 지수로그함수에서 선분 위의 점의 개수, ... 이런거 단답형에서 쌍으로 출제되면 ... 사실 난문 없이 상위권도 변별 가능해지죠 ... 수학2, 미적분에서도 뭔가 개수 세기 결합해서 출제할 수도 있고 ... 뭐 ... 조합의 수는 무궁무진하니 ...
항상 좋은 글 감사합니다~