이거 발산임 수렴임?
여기서 괄호가 무슨 역할을 함?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
큰확률로
-
대학생들 노트북 필수라는데 구체적으로 뭐할때 필요한건가요
-
검색 기능으로 어느정도 찾아지긴 하는데 검색으로 찾은 메시지 위아래 극히 일부만...
-
44344진학사에 해보니까 6칸으로 추합 예측됐는데 할만할까요+해양대 컴공도...
-
금사빠 공부법 0
같은 독서실의 모든 이성한테 차례대로 고백해서 경쟁자를 제거하는거임....
-
북반구 여름일때 남반구 겨울인거 우리 여름일때 남반구에서 눈오는거 뭔가 괴리감 나만그런가
-
하루카와는 못함 0
-
안녕하세요 한약학과 재학 중인 학생입니다. 한약학과에 대해 알려드리려 글 씁니다....
-
Taem 노프사 물론 70%는 저렙노프사빨임
-
현직 고 1 이라서 맞혔다 키킼ㅋ
-
증거는 없음뇨
-
이거 한줄쳤는데 댓글에 패드립이랑 욕달리더라
-
으아앙 ㅇㄷ가지
-
작년에 현역으로 지사약 입학했는데 계속 미련이 남아서 2학기 휴학하고 반수했습니다...
-
아...시베리아 고기압을 몸소 느껴보는구나
-
정식(?) 공지는 나중에 올릴게요. 전에 저 상담받은 분들은 이거 구매하시면...
-
솔크 오랜만이라 뭘해야할지도 모르겠네 시X
-
진짜 미사카마코토공부법이 개사기인듯 나도 하러간다 라면서 누워있기
-
와…
-
연의vs카의 0
개원 생각없으면 무조건 연의인가요?
-
저녁에 온다 2
여기서 더 미루면 겁쟁이임
-
"수능 망해서 면목없다."며, 선생·강사들 피하지 마. 2
※ 편하게 말하려고 반말로 썼으니 양해 바랍니다. 무명의 수능 국어 강사인데,...
-
김종익 개념 들을거임..
-
인수분해 문제 해설 22
x^3=1의 허근을 w_1, w_2라 하자. 그러면 w_1^2+w_1+1=0임은...
-
다시 돌아왔다! 14
-
Kurzgesagt
-
20 21 현역 수시로 문과 대학 2년감 22 23 군수로 인생 첫 수능준비 24...
-
사실 알바 안 하는 개백수입니다 과외를 잡으려고 해도 잡히지도 않아서 동네에 있는...
-
저이제8등급됨뇨 9등급->8등급 ㅅㅅㅅ
-
라떼는 엑소 트와이스가 국룰이었슴뇨
-
성대vs시립대 1
꿈x 학교교사 하기싫음
-
n^5+n+1을 인수분해 하여라.
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
방학이 왔다는게 느껴지네요
-
탑 어떻게 생각하심뇨 16
아니 얼굴은 내 스타일이고 보컬 진짜 빅뱅에서 빠지면 안 되는 놈이라서 노래 들을...
-
아님 말구,,
-
대학에서 그렇게 보겠다는데 뭐 과탐 3등급 4등급 받으면 누가 과탐 하라고 칼들고...
-
기초가 부족하면 1월에 시작하는 조기반이 맞겠죠?
-
아무튼 그렇다고 함
-
ㅠ
-
대치동 어둠의 스킬 10
흐흐흐
-
이 기분 뭔지 아는 사람
-
이쪽은 진로가 어케됨?
-
아까 남은 거 먹는데 맛있음 ㄹㅇ
-
입시판 떠나고 연애 시작함뇨 수능이랑 연애 병행하면 둘 다 망할거같아서••
-
어디갔어 ㄷㅋㅈㄱㄱ
-
야 진학사 3칸 붙을확률이 30%라는데 할만한거 아님?? 야 텔그 50%면...
인접하는 두 수를 하나의 항으로 묶어 줘요
근데 수렴발산여부는 어떻게 알죠?
오른쪽 급수는
(½-a) + (a-b) + (b-c) + ...
이런 꼴이잖아요? n번째 항이 (n/n+1 - n+1/n+2)라고 할때 n번째 항까지의 합은
(½-a) + (a-b) + ... + (n/n+1 - n+1/n+2) = ½ - n+1/n+2가 되고
저걸 n이 무한히 커지는 극한을 취해 보면 -½이 되2ㅛ
제n항까지의 합을 살펴 보면
왼쪽 급수는 어느 순간 마지막 항이 음수일 수도 있고 양수일 수도 있는데
오른쪽 급수는 언제 보더라도 항상 (양 음)이 더해짐
그럼 오른쪽 급수 수렴값은 어떻게 아나요?
위에 썼음
수열 a_n의 합을 S_n이라고 할 때
급수 S_n이 수렴한다면 일반항 a_n은 0으로 수렴한다
이건 알고 계시죠?
이 명제의 대우 명제를 취해 보면 일반항 a_n이 0으로 수렴하지 않는다면, 즉 발산하거나, 수렴하더라도 0이 아닌 값으로 수렴한다면 급수 S_n은 발산해요
근데 저기 사진에서 왼쪽 급수는 발산하잖아요? 홀수 항은 +1, 짝수 항은 -1로 수렴하니까.. 그니까 왼쪽 급수는 발산이라고 바로 판단할 수 있음
근데 어떤 명제가 참이라고 해서 그 역이 참이라는 보장은 없잖아요?
그래서 일반항 a_n이 0으로 수렴한다고 해서 꼭 S_n이 수렴하는 건 아님 그래서 실제로 값이 어떻게 되나 조사를 해줘야 됨
사진의 오른쪽 급수는 일반항이 0에 수렴하잖아요? 그러면 바로 수렴이라고 판단하는 게 아니라, 수렴일 수도 있고 발산일 수도 있으니까 조사를 해줘야 됨
와 감사합니다...