[이동훈t] 기출로 기출 풀기 (241128) 미적분
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가끔씩 3
오르비에서도 욕을 하고 싶을 때가 있어요
-
ㅁ?ㄹ
-
분명 12월 4일까지만 해도 부산대식 701이라 상향 어디쓰지 룰루였는데 왜...
-
서연고 말고 내신반영하는 학교가 또 있나요?
-
연대 고대 0
연대식 697.16 고대식663.23인데 둘다 화생공은 힘들까요 ?
-
취미 생활이나 좀 하다 도로 자야지
-
일반적으로 문사철은 되는 점수인가요?
-
그냥 코믹인줄 알았는데 대반전이 있을줄은
-
한양대병원이 서울에만 있는 게 아니라는 사실을 아시나요!
-
어차피 못이룰건데 꿈은 무슨꿈. . . 좋아하는거나 있음 다행
-
시험 치고 나왔을 때 잘봤다는 느낌이 없어서 합격할줄 정말 상상도못했는데…
-
제발ㅠㅠ
-
사실 살기싫어지면 안락사당할자유라도 존재해야하는게아닐까 마지막이라도 아름답게가고싶은데
-
X된듯 ㅠㅠ 0
지구과학 1단원이랑 우주 파트 시험 범위ㅇ입니다 -->우주는 주계열성(허블? 전)...
-
아미친 11
정신 몽롱하다가 갑자기 하늘에서 떨어지는 느낌나서 바로깸...
-
인스타 릴스보면 1년만에 100kg에서 50kg까지 다이어트 성공 이라는 릴스 많이...
-
죽음이 있기에 더 삶이 의미있어지고 또 우리가 살아가는 삶 자체가 즐겁기도 하지만...
-
화공말고 화학
-
우리가 학교다닐 당시에 이성교제 금지하는 학교, 하지말라하는 부모님 꽤 있었음 근데...
-
다들잘자 6
굿밤되세용
-
딱 들었을때 무슨 생각듦?
-
교재도없는과목인데개ㅈ됏다ㅋㅋ
-
괘씸죄
-
말좀 해 원래 이렇게 말이 없어? 재미없어 나 싫어?
-
현역수능 66 95 2 86 7 재수6평 93 88 4 98 97 재수9평 78...
-
아~연애하고싶다 1
아 ㅜㅜㅜㅜ
-
내가 누구? 1
꼬들 1076 3/6 Kordle.Kr ?12 ⬜️??⬜️⬜️?...
-
모텔가서 같이 영화 볼 친구 한 명 없네..
-
모의지원/자체예상 둘다 볼 수 있게 해둠
-
기하 칼럼 수요 조사 14
쓸만한 내용 추천받습니다
-
한 오천69개보낸듯 과외규하기급하다는것들이 읽지도않음 뭐하는것들이야 나 니네 성적...
-
죽기전에 쓰르라미는 보고 죽으셈 메아카시까지만 잘 버티면됨 ㄹㅇㄹㅇ 슈타게 진격거...
-
낙지 보다 보니 갑자기 쫄리네
-
교과 있지만 정시상담할 겸 겸사겸사 담주 월욜에 잇올 가야함 근데 나 1년 동안...
-
나중에애를키울수도없고 나중에나와함께있어줄사람도없고 아무리돈을벌어도물려줄사람이없는구나 아.
-
20대에는 오래 못감 근데 외모 상위 30% 미만은 잘해주지 않으면 못만남 그니까...
-
선넘질받 8
Cross the line
-
결혼은하고싶은데 애는 싫어 원래부터 애기들 안좋아하고 동물 안좋아하고그랬음 그냥...
-
울었다 1
고마워
-
서울대 지균이랑 일반 교과평가 기준은 똑같은건가요? 지균도 대부분 BB 받는건가요?...
-
이 통계는 2024년 10월 18일 csTimer에서 자동으로 생성되었습니다....
-
어그로 죄송합니다ㅠㅠ 커리 한번만 봐주세요 상담 잘 해주시면 덕코 드려요 국어는...
-
새롬님을 이륙 시켜 보려고합니다 12월달23일 전까지 달성 하고 싶습니다 -오르비언-
-
야구팀 추천좀 9
야구 되게 인기 많던데
-
몇만년전부터 님들 부모님 세대까지는 다 결혼을 해서 애를 낳으신거임 그리고 님들이...
-
모든 건 재종이 아니라 독재일 경우의 얘기 국어-강민철+상상 연간+이감 모의고사...
-
수시가 다 떨어지는 절망이 있더라도 그 절망은 더 큰 희망을 위한 발판이 될 거야!
-
사탐선택 0
생윤 윤사 정법 경제는 아마 안할거같고 쌍지 쌍사 사문+지리or역사 할거같은데...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545