GOAT 판별 ox 문제 해설
https://orbi.kr/00067568363/GOAT%20%ED%8C%90%EB%B3%84%20ox%20%EB%AC%B8%EC%A0%9C
(GOAT 판별 ox 문제)
재미삼아 올린 글인데 이렇게 많은 분들이 보실 줄 몰랐습니다!
많은 분들이 해설을 원하셔서 간단하게 적겠습니다!
1. 미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>0?
(X)
반례 : f(x)=x^3은 실수 전체의 집합에서 증가하지만 f'(0)=0입니다.
+
'미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>=0이다' 는 참입니다.
1번 문제의 역인 '미분가능한 함수 f(x)가 f'(x)>0이면 실수 전체의 집합에서 증가한다.' 는 참입니다
2. 연속함수 f(x)가 x=a에서 극대이면, x=a에서 극소가 아니다?
(X)
반례 : f(x)=0은 x=0에서 극대이자 극소입니다.
+ 극값의 정의는
https://namu.wiki/w/%EA%B7%B9%EA%B0%92?rev=209#rfn-2
를 참고하면 될 것 같습니다.
3. 연속함수 f(x)가 x=a에서 미분가능하지 않으면, x=a에서의 접선이 존재하지 않는다?
(X)
반례 : f(x)=x^3의 역함수 g(x)에 대하여
g(x)는 x=0에서 미분계수가 존재하지 않아 미분가능하지 않으나, x=0을 접선으로 갖습니다.
+ 잘못된 반례
f(x)=lxl+x는 x=0에서 미분가능하지 않으나 y=0을 접선으로 갖는다?
f(x)=lxl+x의 x=0에서의 접선은 존재하지 않으므로 잘못된 반례입니다.
접선의 정의는
https://blog.naver.com/772tiger/222518633109
를 참고하면 될 것 같습니다.
4. 미분가능한 함수 f(x)에 대하여 f'(a)=0이고 x=a에서 극값을 갖지 않으면 (a, f(a))는 f(x)의 변곡점이다?
(X)
일단 변곡점이란?
함수 f(x)의 그래프가 오목 -> 볼록으로 또는 볼록 -> 오목으로 변하는 지점 입니다.
반례 : f(x)=x^2sin(1/x) (x가 0이 아닌 경우), f(0)=0
정말 유명한 특이한 (병리적) 함수이므로 자세한 설명은 생략하겠습니다.
함수 f(x)의 그래프입니다.
f'(0)=0이지만 x=0 근방에서 그래프가 계속해서 요동치고 있으므로
x=0에서 극대, 극소, 변곡점 모두 될 수 없습니다. (물론 엄밀히는 증명을 해야 하지만..)
+ 잘못된 반례
1. f(x)=x^3(x-2)가 x=0에서 극대, 극소 변곡점을 갖지 않는다?
x=0을 기준으로 볼록 -> 오목하게 변하므로 변곡점이 맞습니다.
2. 상수함수?
상수함수는 모든 점에서 극대 또는 극소이므로 전제에 맞지 않습니다.
3. 도함수가 존재하나 이계도함수가 존재하지 않는 함수
예를 들어
f(x)=x^2 (x>=0), -x^(x<0)인 경우
x=0에서 이계도함수가 존재하지 않아서 극대, 극소 변곡점 모두 아니다?
의외로 많은 분들이 착각하시는 것들 중 하나 입니다.
'변곡점이 존재한다'고 해서 그 점에서 이계도함수가 존재하는 것은 절대 아닙니다.
극대 극소랑 비슷하게 변곡점의 '정의'를 이용해서 살펴보면
x=0을 기준으로 오목 -> 볼록하게 변하므로 변곡점이 맞습니다.
그래서 이게 수능에 도움 됨?
결론부터 말씀드리자면 1번을 제외하고는 필요 없습니다.
사실 2번 같은 경우도 중요하긴 하나....최근 평가원에서 상수함수의 극대 극소를 물어보는 문항을
본 적이 없어서 그렇게 크게 중요한 부분은 아닌가 봅니다.
3번은 접선의 정확한 정의를 고등과정에서 알려주지 않기 때문에 크게 중요하지 않고,
4번은 말할 것도 없다고 봅니다...
그래서 이 ox 문제를 풀지 못했다? 수능 성적에 어떠한 영향도 주지 않으니 걱정하지 않으셔도 됩니다..!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
독서는 지문에, 문학은 선지에 중점을 두고 푸는거 같은데 저만 이런가요?
-
복소해석학 조아~
-
사랑해
-
아버지 내일 사람들 만날 일 있다는데
-
갤럭시 살가 0
2025년 최대의 고민읾..
-
윤도영꺼 보니까 한의대+건동홍이하+서강대 무조건 사탐런 중경외시 이상 +다른 메디컬...
-
택도없는 성적으로 찔러보는사람들 수두룩하네 신기함
-
ㅗㅗ
-
둘 다 합격하면 어디가 좋은지와 그 이유 좀 알려주세요 광주살고 집은 조대가 더 가까워요
-
제발 안나와야해
-
투표 ㄱㄱ 0
한전공대랑 고대경영 고민중인데 이유까지 적어주시면 감사하겠습니다 딱히 꿈같은건 없고...
-
과외 여자선생님 4
남학생 과외 할 때 집에서 하나요? 카페에서 하나요? 최근 전남친한테 안 좋은 일도...
-
오르비 좋아졋네 2
굿
-
30대도 ㄹㅇ 있나요?
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][최애맛집공유] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
전적대 자퇴시기 0
정시 최초합인거 확인했고 아직 등록은 안햇는데 등록 전에 전적대 자퇴해도 되죠?
-
오르비 망했네 4
글리젠 속도가 내가 기억하던 오르비가 아닌데
-
열두시가 넘었는데
-
씩 걸리는데 시간 좀더 단축해야할까요? 문제풀면 거의 다 맞거나 어쩌다 하나 틀리는...
-
물2 인강 및 문제집 좀 추천 부탁드리겠습니다. 이 선택 맞는거겠죠..?
-
기숙학원가려고하는데 성적대가 그저그래서 러셀 자연관이랑 강대 퀘타 생각중입니다...
-
작년에 대학 다니느라고 공부를 거의 못했습니다. 어느정도냐면 수능 일주일 발표과제...
-
눈쌓이네 ㄷㄷ 0
요즘눈왤케오지
-
??
-
65만원만내면 무료니까 많이이용
-
비법은 그릭요거트임
-
죽을만큼 사랑하고
-
아니 레벨 9
왜케 빨리오름? 내 몸무게처럼 늘어나네
-
조정석입니다
-
지나가시면서 평가부탁드립니다!!! - EBS수능특강 영어독해연습 1강 Exercise2 지문분석필기 0
EBS 2026학년도 수능특강 영어영역 영어독해연습 1강 Exercise2...
-
책은 수1 수2 작년 거 있고 미적분만 26으로 사서 쓰려고 합니다 수1 수2...
-
오르비 학벌보니까 한쪽으로 치우쳐진거같은데
-
맛잇다
-
길게 보고 만날 만한 사람인 것 같다
-
난 이목구비 얼굴형 특징부터 체형까지 다다름 ㅋㅋㅋ 학창시절에도 같이 걸어가면...
-
기출분석하듯이 풀고 분석하는데 너무 가성비 ㅂㄹ인가 그냥 n제 풀듯이 풀어제끼기?
-
2024 수시 등록금 고지서 관련 게시물: 2024.2.1 2024 정시 최초합격자...
-
후회된다 걍 삭발하니까 인생이 피폐해져
-
나도 내가 작년에 왜 저걸 제일 많이들었는지 모름
-
시발점 질문좀여 0
시발점 스텝 up이 워크북 스텝 1보다 어렵나요??
-
곱집합도 잇음 3
ㅇㅇ
-
치킨시킴 14
으흐흐흐
-
아 근데 길가다 남자한테 번호따이진 않겠지;;
-
내가 작년에 제일 많이 들은 노래 맞추면 천덕 드림 4
힌트 게임과관련됨 연세대와관련됨
-
Phi.
-
바로 정상화
4번은 많이 유명해서