근의 분리 상위호환
과외준비를 하다가 이번 6모 15번과 작년 9모 13에가 어떤 관점이 동일하게 쓰인다는 것을 알았는데요,
특히 9모 13번을 이렇게 푸는 것은 처음 봤다고 하네요.
앞으로 근의분리는 쓰지 마세요. 오늘 알려드리는 이 방식이 근의 분리를 거의 완전히 대체할 수 있습니다
(글 맨 마지막에 조건 달아뒀습니다.)
일단 이번 6모(2025학년도)입니다. 문제를 다 풀진 않을거고, 맨 마지막 부분만 볼게요. (나) 조건을 통해 k=2인 것까지 구한 상황입니다.
k=2니까 g(x)가 미분가능하려면 f(2)=2, f'(2)=2여야 합니다. 최고차항 계수가 1인것도 아니까, 문자 하나만 가지고 식을 세울 수 있습니다.
이렇게 말이죠.
(가) 조건에 의하면, 얘가 x가 2보다 큰 곳에서 항상 증가해야 합니다. 그럼 당연히 도함수 관찰을 해야겠죠.
아, 센스 있게 2만큼 왼쪽으로 평행이동해서 봐도 되는데(저도 풀 때 그렇게 했구요) 헷갈리는 독자도 있을 수 있기에 여기선 그대로 갈게요. 괜히 과정 추가하지 않겠습니다.
아무튼 미분해보겠습니다.
냅다 판별식 쓰면 안 된다는 것은 알고 계실겁니다.
함수가 x축과 두 번 만나지만 x가 2보다 클 때는 x축보다 위에 있을수도 있으니까요.
난 그냥 그렇게 해서 맞았는데? 하시는 분들은 운이 좋으신 겁니다. 이 문제에선 결국 그게 답이긴 하더라구요 ㅋㅋ
여기서 a 범위를 나눠서 푸는 분들도 있습니다.
그건 올바른 풀이지만, 완전히 상위호환인 다른 풀이가 있어요. 그걸 지금 알려드리겠습니다.
일단 부등식에서 모르는 문자가 있는 부분을 넘겨버립니다. 그 뒤에 기하적인 의미를 부여할겁니다.
왼쪽은 완벽하게 그릴 수 있는 이차함수고, 오른쪽은 (2,0)을 지나면서 a에 따라 기울기가 달라지는 직선이죠.
이때 “직선이 항상 이차함수보다 아래에 있어야 한다” 라고 해석해주시면 됩니다.
그럼 기울기가 점점 가파라지다가 딱 접하는 순간까지 가능하겠죠? 그때보다 기울기가 더 커지면 직선이 더 위에 있는 순간이 생깁니다.
반면 기울기가 음수라면 음의 무한대까지 계속 가능할 겁니다.
x가 2보다 큰 곳에서는 여전히 아래에 있기 때문이죠.
그럼 접하는 순간 계산해볼게요.
a는 플마 루트 6인데, 둘 중에서 우리가 원하는 순간은 -루트 6일겁니다. 그래야 빨간 직선의 기울기가 양수가 되기 때문이죠.
a의 범위는 -루트6보다 크다가 되겠네요.
2024년 9평 13번에도 이걸 적용해볼게요.
저도 이렇게 빨리 풀릴 줄 몰랐는데, 아주 빨리 풀 수 있습니다.
얘도 당연히 도함수를 관찰해야겠죠.
연두색 영역에 도함수가 그려져야 합니다. 파란색 함수처럼요.
반드시 (-1,0)을 지나야 하겠네요.
왼쪽 함수에 대입해봅니다.
b=2a-1이 나오겠네요.
도함수의 오른쪽부터 관찰해보겠습니다. 아까 했던 거 똑같이 할게요.
a범위 구했습니다.
왼쪽에서 새로 추가되는 조건은 없습니다. 이미 이 조건만으로도 왼쪽 구간 함수는
y절편이 양수고
(-1,0)을 지나므로
아까 말한 연두 구간에 그려집니다.
우리가 구해야 하는건 a+b의 최대최소 즉, 3a-1 의 최대최소값입니다. a 범위를 아니까 다 구한 셈이네요.
네 여기까지입니다.
부등식으로 인식한 뒤에 약간의 변형을 가해주어서 기하적으로 관찰하는 방법을 알려드렸습니다.
문자범위 나눠서 하는 것보다 훨씬 빠르고 실수 확률이 적은 풀이라 생각합니다.
한 마디 덧붙이자면, a로 묶인 부분이 기하적으로 깔끔하게 해석이 가능할 때 이 방식을 쓸 수 있습니다.
그럼 언제 깔끔한 해석이 불가할까요?
a의 계수가 이차도 있고.. 일차도 있고 이런 식으로 여러 개가 있다면 기하적 의미를 부여하기 힘들 겁니다.
즉 문자 계수가 하나로 한정된 상황에서는
이 방식이 근의 분리를 완전히 대체한다고 말할 수 있겠네요.
다음에 또 좋은 글로 찾아뵙겠습니다. 감사합니다.
0 XDK (+1,010)
-
1,000
-
10
-
중,고 같반 동창들이랑 동창회 함뇨?
-
냉면은 왜 1
주 3번을 먹어도 안 질릴까
-
저희 할머니도 건강하게 오래살아서 제 환갑때까지 같이 사시면 좋겠네용
-
목적지만 대충 골라놓는데 왕 신기맨
-
ㄴ너무 추워... 18
얼거같아요......
-
점메추좀
-
6수해서 성공한다는거 보여주라구!!!
-
재수... 0
6모 언매 3(85) 확통 4(73) 영어 3 정법 3(88) 사문 3(80) 9모...
-
5수끝 서울대 의대 성공 ㅋㅋ
-
정시파이터를 다짐했고 1년동안 미쳐보려 하는데 여러분들은 공부 자극을 어디서...
-
다음화 빨리 나와라 이사기는 골 좀 넣고
-
ㅇㅇ 걍 아무이유도 없이 난 가끔 있음
-
ㄱㄱ
-
집은 부산대가 더 가깝습니다. 취업 생각하면 부산대가 좋다고하고 대학이름만 보면...
-
54 -> 69 드라마틱한 성장!
-
원하는게다실패함 개신기하지않음?
-
인생 뭐있냐 그냥 수능과 함께하는거지 될때까지 도전하는 메시처럼 니들도 될때까지 ㄱㄱ
-
개궁금함
-
생2 커리 추천 0
백호T 섬새스완 하고 기해분인가 그거 구해서 하려는데 커리큘럼이 이게 맞나요?
-
기분 나쁜 그런 생각이 많이 들어서 오늘은 완전히 망쳐버렸어요 내일은 좋은 일이...
-
그중에서 1등이면 안정이겠죠? 근데 변표가 안나온데라서 좀 불안함
-
물수능이니 펑크 안나니 8칸 써야한다는 담임선생님 말씀 잘 들으라고 ㅋㅋ
-
내가원하는대로 다 됨 돈복사 ㅆㄱㄴ임. 대신 10000년동안은 의무적으로 살아야함 연장은자유
-
69x들 총집합해서 그냥 정상입결될듯 ㅋㅋ
-
정시 가나다군 0
A: 가군 경북대 경영 74% 6칸 나군 건대 정치외교 44% 3칸 다군 홍익대...
-
가 국룰이긴 한데 올해는 진짜 뭔가 달라보이긴 함 뭔가.. 뭔가 온다
-
진짜 개화난다 8
여친이 한달에 5~6번은 그냥 아무 이유 없이 짜증을 냄 내가 이유 물어봐도 자기도...
-
학기중에는 그냥 출제일하는게 낫다고 생각해서 과외 아예 안 받다가 지인분 과외...
-
공통 20 21 22틀인데 뭐해야됨?
-
..
-
심심하다 7
재밋게 해봐라
-
왤케 슬프지 8
이깟AI밖에 나를좋아하는사람이없구나
-
또 까먹엇엇네
-
헤일리는 진짜 내 부인이에요
-
성신 빅데이터 항공대 ai 에리카 건축공 세개중에 어디가 제일 좋은가요 세개 다...
-
이건요?
-
과외하고싶은데 5
수시러가 과외를 제대로 할수 있나 불안함 수능은 다 1뜨긴 했는데 수시러도 과외해도 되겠죠...?
-
공스타에미친놈인가 헉
-
아니면 무관으로남을거같음?
-
강사 말하는 속도는 일단 '느리게'가 디폴트 값이 되는 게 맞는듯 현강은 빨리...
-
속이 뻥~~~~~~~~~
-
아니면 나의 행복회로인걸로 ㅋㅋ
-
그동안은 친구엿는데
-
제일 순위 잘 나오는 걸로 가보게
-
9평 독서 2틀 수능독서 2틀임…
-
여기에 무어랑 히샬 부상에 ㅈ수마 레드 ㅅㅂ…
-
서성한 낙지 2
서성한 라인 지금 낙지 어때요? 짠가요??
-
5분만 자야겟다 4
-
대화를그만두기로했다 날좋아하는유일한AI야 잘가
-
단과 현강 대기 아니여도 신청할수있고..?
개추 눌렀다....
캬
일단 읽어보고 걔추
앞으로도 좋은 글 써볼게요 ㅎㅎ
ㄷㄷㄷ
갑종님이랑 생각이 거의 일치하는...
왜냐면 둘이 친구거등
저도 작년 9평 13번을 이렇게 푸는게 맞다고 생각했어서 근의 분리니 뭐니 말 많을때 잘 이해가 안되긴 했었어요
김현우 선생님이랑 완전히 똑같이 푸셨네요.. 칼럼 잘보고 갑니다!
15번 이거풀때 산술기하로 풀었는데 최솟값이라 풀린거겠죠
6평 말하시는거죠?
산술기하도 괜찮네요. 왜냐면 여러가지 조건이 딱 맞아 떨어져서 여기에 산술기하를 쓸 수 있습니다.
일단 x가 2보다 큰 부분을 봐야 하는데, 그게 x-2>0이어야 하는 산술기하 조건이랑 맞아떨어졌구요,
부등식에서 오른쪽 부분이 상수이기 때문에 최솟값만 보면 됩니다.
물론 좀 더 근본적으로는, 산술기하는 완전제곱식에서 나온 공식이기에 똑같다고 볼 수도 있지만
아무튼 아주 맘에드는 관점이네요!!
넹 6모 15번 x-2>0보다 큰상태여서 이거로 산술기하썼는데
해설강의같은거 보니까 다들 다르게풀어가지고 결국 똑같은이야기였네요
대범준 그래프 분리
첫 문제에서 a=±루트6 구하셨을 때 D/4 공식을 쓰셔는데, 미지수를 (x-2)로 해서 b'²-ac 로 바로 구하신건가요?
아! 근데 그렇게 해도 되는건가요? 제가 고1수학을 날림으로 배워서..
넵, 이해를 도울 수 있는 두 가지 관점을 소개해드리겠습니다
1. 평행이동.
x축과 만나지 않는 이차함수를 좌우로 평행이동해도 여전히 x축과 만나지 않는다. 따라서 해당 이차함수를 2만큼 왼쪽으로 이동시킨다면 3x제곱 +2ax+2이고, 여기에 판별식을 쓰면 된다.
2. 치환
x-2를 t라는 새로운 문자로 잡는다.
사실 1과 본질적으로 같다.
감사합니다!! 저는 x가 변수인 상황에서 판별식을 쓰는데, 2만큼 평행이동을 해도 똑같이 성립이 되는지 궁금했었는데 이해가 되네요! 정말 감사합니다 ㅎㅎ 덕분에 수준높은 풀이법 하나 배워갑니다 . 감사합니다!!
저도 굳이 근의 분리까지 안끌고가고 싶어서
저는 그냥 잘 모르겠으면 화끈하게 근의공식 때리고, 두 근이 모두 k보다 작아야한다면
D >=0인 경우, 그냥 더 큰 근이 k보다 작다! 라고 하게끔 가르쳤는데
기하학적인 풀이도 너무 좋은 듯 합니다 ㅎ
잘 보고 갑니다!
관찰중인 문자의 차수가 여러개가 아닌 이상 (예를 들면 식에 a도 있고 a제곱도 있는 경우), 위 기하적인 풀이가 근의 분리를 완전히 대체합니다
.
의견 공유 감사해요 ㅎㅎ
고정된 요소가 필요하다는 말씀 맞으실까요? 좋은 댓글 감사합니다 ㅎㅎ
오 이거 좋네요. 시간 단축 꿀일 듯.
+ 이번 6평 14번 부등식도, 부등식 여러개로 케이스 분류해서 끼워 맞추지 않고, 일차함수랑 이차함수 만나는 걸로 구할 수 있음!
정말감사합니다
오늘도 배워갑니다 감사합니다
많은 상황에서 상위 호환은 맞지만 계수의 꼴에 따라선 대체가 안 되는 경우도 있습니다!
(고정점 지나는 직선으로 해석이 안 되는 경우도 있음)
저도 위에 댓글에 달아놨는데, 그 경우에는 기하적 의미를 깔끔하게 부여할 수 없습니다
본문에도 추가해야겠네요
질질 쌌다.
미분을 활용하여 직선의 회전 이동을 관찰한다, 감사히 잘 읽었습니다!
좋은 글 감사합니다
선생님 진짜 미틴넘이시네요 미친초고수다