오랜만입니다 (자작문항)
공통 12번 정도?의 난이도 되는 것 같습니다. 사관학교 문제가 재밌어서 그런 방향으로 만들어봤는데 괜찮은지는 모르겠네요. 많이 풀어주시면 감사하겠습니다. 피드백도 많이 부탁드립니다.
모든 문만러분들 화이팅입니다!
(+) lg(x+k)l=lf(lxl+k)l 로 풀어주세요. 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이 풀이는 할게 산더미처럼 쌓여있지만 새벽에 미쳐서 밤을 새버린 대학생의 똥정도로...
-
내 인생이니까 맘대로 살라고 하시는 것 같은 학생 때는 조금은 뭐라 하셨어서 가끔 싸웠었는ㄷㅔ
-
인간주제에..
-
유도하고싶은데
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
히히 똥 히히 0
히히
-
해설써봄
-
후
-
수드라로 태어났으니 공부라도 열심히 해야지 ㅅㅂ...
-
얼버기 2
사실 안 잤어용ㅋ
-
얼버기 1
인 줄 알았으나 아직 안 잠
-
트럼프 행정명령으로 이재명은 오토 윔비어법으로 처벌할거고 부정선거 또한 밝혀질 거임...
-
낮에 확인해봐야지..
-
걍 n축으로 밀어푸는 풀이가 잇던거 같은데 기억이 안나 없는건가 이거 잇던거같은데 분명
-
ㅎㅇ 1
-
ㄹㅇㅋㅋ
-
본서버완화도해줬잖아
-
얼버기 4
이따 또 잘거임
-
분명히 선거관리 하라고 만든 기관인데 선거때만되면 정규직은 휴직하고 계약직이 일하는...
-
어느 쪽으로든 힘조절 잘 안 돼서 나오지 않을까
-
빛에 관성있고 열역학 틀린것도 모르는 전세계의 과학자들 수준을 보면 뭐 이상한건 아니네..
-
자세한 사항은...
-
거북아거북아 결과를 내어라 내놓지 않으면 구워서 먹으리
-
스카 자리 추천 21
1번이 좋을까요 2번이 좋을까요
-
진짜야
-
그치만 아무도 나에게 과외를 받고 싶어하지 않는 걸
-
얼버기 4
기상완료
-
무뽑으로 코하네 월링 ㅅㅅ
-
눈 부음 + 샤워 못해서 꾀죄죄해서 집에만잇엇는데 가서 실모나 풀까요
-
여기서 흡연하지 말라면서 흡연할 수 있는 곳을 안알려줘…. 흡연부스라도 주세요….
-
171130 (나) 12
심심해서 얘도 빠르게 풀어봄...
-
좋아하는아티스트라이브직관이있었는데 티케팅 실패했어서 안죽었음
-
수분감 자이 2
예비 고3이고, 내신 챙기면서 정시도 챙길건데 수분감 자이 중에 뭐가 나은가요?...
-
이게 맞냐…. 5
오르비 하다가 3시간 자는게
-
난 좋아 8
-
특히 선정리 이게 그냥 미쳣음 미친 동선이다 진짜
-
그 특유의 감성이 너무 좋아용..!!
-
친구꺼 빌림 엄마한테 담배피는거 걸리면 안되서 증거를 남기면안되거든
-
[호드] : 관리자 님은, 스스로를 마주하는데 성공하셨나요? [호드] : 이 곳에서...
-
진짜모름 이거 어케함요
-
효과는 미미했다
-
새르비하는 사람들이 많아서인지 새르비가 재밌구만
-
사실 헛된 희망이 아니라 그냥 희망이었으면 좋겠는데 뭔가 그런 낭만과 이상을...
-
궁금
-
전에 기립성 저혈압땜에 갑자기 정신줄 놓아서 쓰러진적 많았는대 의외로 나쁘지는 않았음
-
비문학 선지 읽으면서 이해를 하고 전반적인 지문 이해가 된 상태에서 선지를 보고...
16?
조건(나) 까먹어서 잠깐 헤맸...
저 조건 없으면 f(x) 개수가 한없이 많죠
혹시 함수가 (x+3)(x-3)^2/27 인가요
(x+3)은 아닙니다 ㅠ
(가) 조건에 의하면 단지 평행이동만으로 미분이 불가능했다가 가능하도록 만들 수 있다는 건데 이해가 안돼요 ..
g(x)를 x의 범위에 따라서 정의해보시면 쉽게 이해 가능하실 겁니다 :)
모르겠네요.. 설명부탁드려도 될까요
f‘(0)의 좌미분계수와 우미분계수가 같아야합니다.
즉, f’(0)=-f’(0)이므로 f’(0)=0입니다. 이것이 x축 방향으로 1만큼 평행이동한 것과 x축 방향으로 -3만큼 평행이동 한 것에서만 성립한다 하였으므로 f’(-1)=f’(3)=0입니다.
저도 풀어봤는데 오류 같습니다. g(x+k) 가 f(|x|)를 x좌표로 평행이동한 꼴인데, 이게 미분가능하려면 x=0에서가 아니라 x=-k 에서 미분계수가 0이어야 해요.
Wogud님이 푸신 건 정답이 맞습니다 제가 인수분해 되어있는 줄 몰랐네요 풀이 과정 의도는 그게 맞는데 오류인가요?
아마 의도하신 정답이 나오려면 g(x+k) = f(|x+k|) 가 아니라 g(x+k) = f(|x|+k) 가 되어야 할 것 같습니다