2025年 사관학교 27,28,29,30 Solution
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
그냥 그렇다구요
-
레전드상황발생 1년동안 시체처럼 지내면 몸이 이렇게 되는구나
-
현실은 차갑네
-
한 번도 수학이 2등급 밑으로 떨어진 적 없는데 요번 수능에서 처음으로 3 받이보게...
-
저는 강원도로 갈 것 같고(진학) 전남친은 부산내려가있는데 (원래 부산사람이고...
-
얼평해줘 4
-
목표정했다 0
올수성적 국수영 6,4,5. . 탐구노베 3월교육청때 국어는 5정도 목표로하고...
-
국영수 최대로 끌어올릴자신 없으면 과탐하고 표점이득 보는게 낫나요? 예비고3...
-
걍 눈 닫고 귀 닫고 할거 하고 살면 딱히 열받는 일도 없어지는 듯
-
보통 애인 있는거죠? 평소에 손에 장신구 안 끼던 사람인데..
-
제 머릿속엔 8
여붕이 리스트가 있습니다
-
삼수하게 되면 옆에서 20살 명문대 존예 과외쌤이 일거수일투족 모든것을 관리해주면서 가르쳐주는 상상
-
짜증났는데ㅔ 오늘은 제가 부르겠습니다 근데 그분은 새벽 1시에 부르셨어요…
-
인치작고 가볍고 가성비 굿인걸루
-
섬
-
츠나기아와세테 에가이테유쿠 아나타가 쿠레타 데아이토 와카레모
-
ㅈㄱㄴ..
-
연대 0
1차 붙은사람 빼고 260명인거임 아님1,2차 합집합이 520명인거임?
-
나는 재수확정 버러지라니 열등하다 열등해 좋은 대학 가면 자격지심 사라지겠지..
-
보통 실력이 2,3섞여있어야함?
-
ㅈㄱㄴ
-
올영에서 3마넌 질렀다
-
차출..이라보단 "선생님 저희 로스쿨 입시도 하게 됬는데 좀 와주십쇼"겠죠
-
복잡하거나 되게 어려운 문장 나오면 종종 해석이 이상하게 엇나가는 느낌이...
-
축제 나간횟수 4
중딩때 1번 고딩때 3번
-
초딩때 할아버지집에서 tv로 봤었는데... 제목이 기억이 안나요
-
그동안 공정성훼손!!!!! 무효!!!!! 외치던 그들 재시험 치면 기존 합격자들이...
-
작년에 다닌 독재만 5군데입니다.. 정확하게말하면 공부환경에 빨리 질리는거같아요...
-
흠 1
경제를 하지 말았어야 했다 수학 29번 실수+경제 망 2연타를 맞으니까 얼얼하네
-
???:리트도 반응해라!
-
국어 수학이 낮고 탐구가 높아 재수를 했더니 반대로 탐구가 말썽입니다...ㅎㅎ 메가...
-
하 내 자유시간...앞으로 하루에 4시간은 공부해야할듯
-
우왕 6
-
2과목 꿀이다 이러는애들 대부분 착각일 가능성이높음? 1과목 비교 이딴거없이 그냥 2과목 자체로만
-
스카독재는 정말 7
자제력이 좋으신 분만 하셔야... 올해 초에 잠깐 하다가 6모 말아먹고 잇올...
-
눈 ㅈㄴ 아픈데 1
수면마취로 첫수술때는 안아팠는데 오늘은 왤케 아프지
-
70살에 혈액투석하는 환자는 그냥 진료 안보는게 맞습니다만 굳이 치료하시려면 과거력...
-
친구가 없노
-
신입생들끼리 하는건가
-
과외받고 올랐어요 혼자 조정식 이명학 션티 강의 모두 수강해보고 실모 돌리다가 답이...
-
중딩때 무식하게 고음만 질러대서 성대결절 3번정도는 이미 왔다간거같음 이러다 노래 못부를거같아
-
안녕하세요, 수능 국어를 가르치는 적완입니다. 오늘은 화법과작문 선택을 장려하는...
-
비가 내리고 1
음악이 흐르면~
-
분명 오엠알 보고 가채 썼는데 나도 모르는 억까가 발생할까봐 넘 무서움..
-
선택권은 없었지만 재밌네요
-
가산점 변표 고려하면 어디까지 될까요
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데