(스압) 드디어 풀었다!
지난 화 보러 가기: https://orbi.kr/00068674487/(%EC%8A%A4%EC%95%95)-%EC%82%B0-%EC%97%BC%EA%B8%B0-%ED%8F%89%ED%98%95-%EB%AC%B8%EC%A0%9C-%ED%92%80%EC%9D%B4?q=%EC%8A%A4%EC%95%95&type=keyword
*오타입니다. w는 각가속도가 아닌 각속도입니다.
-이 문제는 아까 알려준 전기장 및 전위 공식을 기억해야 해. 전위는 벡터를 따지지 않아도 돼. 그냥 거리와 전하량의 관계만 알면 끝이야, 끝! ㄱ, ㄴ은 쉽게 풀리지. ㄴ은 거리는 일정한 반면 전체 전하량이 1/3배 됐으니 전위도 1/3배 되겠지. 근데 ㄷ이 문제지. x축 및 y축 방향 벡터로 나눠서 분석한 다음, 합성해서 전체 전기장의 세기를 알아내야 해. 적분은 그냥 고3 미적분 기본 수준이니까 그리 어렵진 않아.
-이 문제는 벡터의 상쇄를 파악해야 해. 먼저 z축 방향의 벡터는 선형 대전체가 대칭이니 상쇄돼. 그리고 y축 방향 벡터는 두 대전체와 서로 거리가 같고 전하량 크기도 서로 같으니 상쇄돼. x축 방향 벡터는 비슷한 이유로 크기와 방향이 서로 같은 x축 방향 벡터 2가지가 나와. 결국 우리는 x축 방향 벡터만 고려하면 되지.
E=-dV/dr은 그냥 단순하게 전기장과 전위의 관계를 나타내는 식이라고 보면 됩니다.
-저렇게 생긴 회로가 있어. 처음 축전기에 저장된 전하량은 없다고 쳐. t=0일 때 스위치 S를 닫았고 충분한 시간이 흘렀을 때, 축전기에 저장된 전하량은? 물2를 했으니 잘 알겠지?
-CV.
-정답.
-근데 물2에 저런 회로는 안 나올 텐ㄷ
-닥쳐.
-다음 퀴즈야. 스위치를 닫은 후 t=t0일 때 축전기에 저장된 전하량이 다음과 같아. 그러면 t=2t0일 때 축전기에 저장된 전하량은?
-별 쓰잘데기 없는 논제로 싸우질 않나, 상대방의 의견의 논점을 제대로 파악 못 하질 않나, 갑자기 논제에서 벗어난 이야기를 꺼내서 다른 주제로 넘어가버리질 않나, 이것만으로도 키보드 배틀 현장은 다 본 셈이지.
-아무튼 스위치를 닫았을 때 처음에는 전류가 흐르다가 점점 그 세기가 줄어들 거고, 동시에 축전기에 저장된 전하량도 커지겠지. 키르히호프 법칙을 써서 i=dq/dt를 이용하여 정리를 하면 미분방정식이 나오는데, 이건 생각보다 간단하게 풀려. 정리하면 시간에 따른 전하량과 전류의 함수가 나오게 돼.
-이제 나온 공식을 저 회로에 적용시켜보면 답은 저것임을 알 수 있지.
-이번에는 초기 전하량이 Q0인 축전기에 저항 R를 연결시킨 경우를 살펴보자. t=0일 때 스위치를 닫는다면 축전기가 방전되면서 전류가 흐르기 시작할 거야. 이 현상을 함수로 표현해보자고.
-이번에는 전류의 방향을 가정해볼 거야. 전류가 축전기 양단의 +로 대전된 극판을 지나서 (-) 극판을 향해 전류가 흐르는 것이 위에서 다룬 회로에서의 상황과 비슷하므로 전류의 방향을 저렇게 가정해보자 이거지. 아무튼 그렇게 가정해서 키르히호프 법칙을 쓰고 미분방정식을 풀면 전햐량과 전류의 함수가 나와. 이때 Q0는 축전기의 초기 전하량이야.
-그런데 전류의 부호가 (-)지? 이 말이 뭐냐, 실제 흐르는 전류의 방향이 우리가 가정했던 전류의 반대 방향이라는 거야. 정리하면 회로 내부 상황은 저따구로 일어난다는 거지.
-만약 전류의 실제 방향과 전류의 가정 방향을 일치시켜서 정리하면 전하량이 저런 식이 나와버리는데? 저런 식대로라면 축전기 내부의 전하량이 급격히 커져가지고 축전기가 결국 폭8해버리잖아.
-내가 말한 회로를 다시 보자. i는 내가 처음에 가정했던 전류고, i'은 실제 흐르는 전류야. 방향이 서로 다르니까 i'=-i라고 표현할 수도 있어. 그럼 i=dq/dt니까 i'=-i=-dq/dt야.
-이 그림을 보면 이해가 더 잘 될 거야. 전류가 축전기의 (+)극판을 지나 (-)극판에서 나올 때 i=dq/dt야. 우리가 축전기가 충전되는 회로를 살펴볼 때 이 개념을 사용했잖아. 근데 전류가 반대 방향으로 흐른다면 (-)가 붙게 돼. 전류의 방향이 반대니까.
-이제 네 풀이를 뜯어고쳐보자. 전위차를 활용해 키르히호프 법칙을 쓰는 과정까지는 맞아. 그런데 이 경우에는 i=dq/dt가 아니야. i=-dq/dt야. 이걸 고려해서 다시 미분방정식을 풀면 올바른 답이 나오게 돼. WOW
*지금부터 쓰이는 W는 기체"에" 한 일임을 미리 알려드립니다.
-등압 과정. 말 그대로 압력이 일정하게 유지되는 과정이지. 이때는 특별한 게 별로 없어. 기체에 한 일은 정적분 값에서 부호가 뒤바뀐 값인 거 기억해. 아, 이때는 Q에서 등압 몰비열이 나와!
-등적 과정. 부피가 일정하게 유지되니 기체에 한 일은 0이야. 이때 Q에는 등적 몰비열이 나오지. 여기까진 물1과 살짝 비슷하지?
-등온 과정. 말 그대로 온도가 일정하게 유지되는 과정이라서 기체의 내부 에너지는 일정하게 유지돼. 여기서 PV그래프는 PV=nRT에서 nRT가 T가 일정하니 상수랑 동일한 꼴이니 그래프는 유리함수 형태로 그려져. 이는 정적분을 할 때 크나큰 도움이 되는 정보이지.
-마지막으로 단열 과정이야. 이때는 출입하는 열이 없으니 Q=0이야. 여기서 W는 정적분으로 구하기 힘들어. 내부 에너지의 변화량으로부터 W를 구하는 게 훨씬 더 편해. 이때 중요한 공식이 있어. PV^r=C라는 거야. 왜 이런지에 관한 증명은 나도 몰라. 그냥 외워.
-뭐? 공식을 외울 때는 그 공식의 유도 과정을 똑바로 알아야지!
-너 그럼 삼각함수의 덧셈정리 유도 과정 알아?
-..모르지만...!
내용에 오류가 있으면 알려주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어떻게 생각함? 영단어를 모두 안다는 가정 하에 해석이 안되는 문장은 지금까지...
-
의대 안 쓰게 하려고 심리전 하는 거 아님? 그리고 수시 발표가 났는데 어케 정시 모집정지를 함
-
[단독] ‘계엄 성지’ 별명 롯데리아, 주문 폭주하고 ‘계엄버거’ 패러디도 3
‘12·3 비상계엄’ 직전 전현직 정보사령관들이 계엄 직전 햄버거 프랜차이즈...
-
현역 재수 약대의 벽은 너무 높구나……보내줘ㅓㅓㅓㅜ 재수는 그냥 지방러라 돈없어서...
-
외대식 진학사로 649.53인데 어느정도 발뻗잠할 수 있을까요? 하...
-
간거면 개떡상한거임?
-
공감영단어 이거 너무 히트인데 공감영단어로 단어 충분함?
-
도는이유가 대체뭐임?
-
예전에 설대 중높공 가놓고 인생 한탄하던 오르비언 한명 있었는데 3
말은 안했지만 솔직히 지건 존나마려웠음 성별은 XX였고 지금은 탈릅하심
-
가군 성사과 5칸 적정 한양대 경영 경제 둘 다 6칸 안정 로스쿨 생각 있고 씨파는...
-
여론전은 현대사회의 기본요소라는 생각이 들기 시작함 구라와 타인비난만 안섞는다면야
-
25학번 의대생 겁준다고 발작하는건 대부분 예비 의대생이 아님 2
정작 25의대 합격생이나 지망생들은 얘기 진중하게 들어주고 그 와중에 나름 살길...
-
겨울 2달 동안이라도 공부하고 가려는데 컴공마냥 코딩에 미친놈들 많아서 도태될 확률...
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][자취, 기숙사, 하숙, 고시원 단점비교] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
저 1등은 중대 쓸 성적이 아닌데 가나다 군 전부 다 중대에 박아놨네요......
-
피램 왔습니다 2
새책이 이렇게 많이 쌓이니 두근댑니다
-
정치인이 표를 위해서 25학번 의대생들을 위해줄거다 라는 말을 들으면요 동네...
-
과탐 자체가 어질어질해진건 아는데 그나마 과탐중에 생지1 난이도 할만한 편임?...
-
섣불리 결정을 못하겟다;
-
나랑 맞팔해 맞팔
-
준비물: 인터넷, 진학사 계정 특히 소수과일수록 아주 중요함. 표본보다보면 특이...
-
지금 일어나는 일의 본질적인 문제가 지지율이 부족해가지고 의대증원카드를 쓴거라는...
-
대학에서 제일 돈 안드는 방법은 25학번 방치하는거죠 1
25학번 다 뽑아놓고 유급, 제적빔 때리면서 절반 쳐내고 의평원 인증위해 26학번...
-
ㅋㅋㅋㅋㅋㅋㅋ 이게맞냐
-
차이가 뭔가요???
-
반수해서 옮기는 대학교 합격증 인스타에 올리셨음뇨? 아님 ㄴㄴ?
-
한국이 그렇게 공평한 나라였다면 남자만 독박징병하는것도 나라가 공평해서임?
-
혼자지내면서 알바하고 그 돈으로 혼자 영화보고 공연보러가고 맛있는거 먹는게 인생...
-
맛점하세요 6
맛점
-
가성비로요!!
-
페미니스트대통령 2
헉
-
프사일러 투척. 2
음 역시귀엽군
-
언제부턴가 우리나라는 상식이란게 통하지 않게 되었네요 3
내일 당장 어떤 일이 일어날지 아무도 알수 없는, 그런 나라가 되어버렸어요 언제부터였을까요
-
진학사 간단한 꿀팁1 10
준비물:고속, 진학사 계정, 엑셀, 크럭스테이블 진학사는 원점수는 안보여주고...
-
고1,2 모고에서 대부분은 1컷에 걸리는 성적(1,2 왔다 갔다하는 성적)이었음...
-
점심여캐투척 6
으흐흐
-
학종 열심히 채워놨고 진로는 생명쪽으로 채웠습니다 주요교과 (국수영과사?) 랑....
-
자꾸 재학생들 25학번 불인증 거리면서 겁주고 다니는데 7
-4500시킨다는 사람들이 왜 24학번 -3000시킬수도 있다는 생각은 못해요?...
-
선생님이 갑자기 바지내리면 그것도 생중계로 전국에서 보는거임?
-
꿀잼 두오가실분 구해요...
-
여행일정때문에 고민.. 1/2~1/6 왕복 33 1/21~1/24 왕복 43 둘중하나 택
-
하하
-
일주일을 기념할 수 있군요 ㅋㅋ ㅋ
-
남자가 파데스틱바르고 눈화장이랑 턱쉐딩하면 관리하는거? 13
어제 아는 알바하는형님이 술마시자고해서 급하게 헤어 세팅하고 (가일) 피부 기초로...
-
7일남음 3
카리스미ㅏ스
-
3학년 올라가고 학교에선 미적 선택했는데 수능은 확통으로 보려고 합니다. 이러면...
-
하.. 진짜 괜히 올려봤다… 대체 왜… 3칸뜨는 데가 다 안정이되지..
푸셨을지도 모르겠지만 심심하시면 퍼물한입 하시죠
와 개 유익하네 ㅋㅋㅋㅋ
오호 아무도 다 읽은 사람이 없다는 그 유명한 글... 성지 순례 왔습니다.
저거 생2판 만들고싶다 ㅋㅋ