올바른 연계교재의 활용법-수학
필수: 없음
권장: 수능특강 전 시리즈, 수능완성
선택: 없음
굳이: 없음
수학 영역에서의 연계 양상은 ’아이디어 연계‘의 여섯 글자로 요약할 수 있습니다: 이는 말 그대로 연계교재에 수록된 문제에서 중요하게 다루어진 아이디어가 수능 또는 모의고사에 연계가 되어 출제된다는 이야기이죠.
문제의 아이디어라 함은 문제에서 주어진 상황 또는 표현을 일컫는 것으로, 이러한 상황 또는 표현에 어떻게 대응을 해야 하는지에 관한 아이디어를 연계교재 학습을 통해 미리 습득해 갈 수 있는 것이죠.
우선, 수학에서 연계가 어떻게 이루어지는지에 대한 실제 예시를 한 번 보도록 합시다.
위 예시를 보면, EBS 연계교재에서 ’원 안에 내접한 사각형‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제된 것을 확인할 수 있습니다.
원 안에 내접한 사각형을 마주했을 때 어떻게 해야 하는지에 관한 대응 방법(다른 말로는 행동 영역이라고 하죠)을 위 문제를 통해 미리 습득해 둔 학생들은 아래 문제를 마주했을 때 더 수월하게 풀어 나갈 수 있었을 것입니다.
수학 영역에서 EBS 연계가 이루어진 몇 개의 예시를 더 살펴봅시다.
2024학년도 수능완성에 출제된 ’주어진 범위 하에서 최댓값과 최솟값‘ 상황의 문제위 예시에서는 EBS 연계교재에서 ’주어진 범위 하에서 최댓값과 최솟값‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제되었습니다.
이 예시에서도 역시 전자를 통해 해당 아이디어에 대한 대응 방법을 익힌 학생들은 후자를 마주했을 때 더 쉽게 풀어 나갈 수 있었겠죠.
그럼, 수학 영역에서의 이러한 연계 양상은 수학 1에서만 적용이 되는 것일까요?
물론 아닙니다: 이 글을 읽는 여러분들 중 이러한 의문을 가지는 분들이 있을 수도 있으므로, 수학 2에서의 연계 양상도 한 번 확인을 해 보도록 합시다.
2023학년도 수능특강에 출제된 ’정적분으로 정의된 함수‘ 상황의 문제
2023학년도 6월 평가원에 유사한 상황 + 유사한 선지(ㄱ, ㄴ)이 연계되어 출제된 모습이다.
수학 2에서도 수학 1에서와 유사한 형식으로 연계가 이루어진다는 것을 위의 예시를 통해 확인할 수 있습니다.
그리고 이에 더해서, 이 예시에서는 ㄱ, ㄴ 선지도 굉장히 유사한 모습으로 연계가 되어 출제가 된 것을 확인할 수 있죠.
여기에 더해서, 선택과목에서의 연계 양상도 한 번 확인해 보도록 합시다.
2024학년도 수능완성에 출제된 확률과 통계 문항2024학년도 수능에 유사하게 연계되어 출제된 문항
2024학년도 수능완성에 출제된 미적분 두 문항
2024학년도 수능에 두 문항이 유사하게 연계되어 출제된 문항
2024학년도 수능특강에 출제된 기하 문항
위의 각 선택과목에서의 연계 양상에서도 공통과목(수학 1, 2)에서와 유사한 양상으로 연계가 되는 것을 확인할 수 있습니다.
각 선택과목의 구체적인 개념을 학습하지 않았을지라도, 문제의 생김새만 보고도 이 문항에서는 어느 부분이 연계가 되어 출제되었는지를 대략적으로 파악할 수 있는 모습이죠.
이렇게 수학 영역에서는 연계교재에 있는 문항의 아이디어를 가져와 유사하게 출제하는 연계 방식이 채택되고 있고, 그에 따라서 연계 학습을 할 때에는 각 문항에서 활용된 아이디어와 그에 대한 대응 방법(행동 영역)에 대한 이해를 갖추는 방향으로 학습을 해야 하겠죠.
위의 대응 방법을 활용함으로써 23수능에 출제되었던 다음의 문항을 해결할 수 있는 중요한 키포인트를 발견할 수 있는 것이죠.
마치 기출 학습을 하면서 지금까지 본 적 없던 아이디어를 활용한 문항이 등장했을 때 그에 대한 행동 영역을 수립해 두듯이, 연계교재 학습을 하면서도 똑같은 방식으로 행동 영역을 수립해 두면 되는 것입니다.
2024학년도 6평에 출제된, 9번이지만 오답률 60%를 기록한 문항
한 가지 예시를 더 살펴봅시다: 위 문제는 2024학년도 6평에 출제된, 수열의 합을 일반항 형태로 바꾼 뒤 부분분수를 이용하여 답을 구해야 하는 문항으로, 9번답게 간단한 형태였으나 의외로 EBSi 기준 60%의 오답률을 기록해 많은 학생들의 발목을 잡았던 문항입니다.
아이디어만 떠올리면 바로 풀 수 있는 문제임에도 그렇게 많은 학생들이 걸려 넘어졌다는 것은, 그 문제의 아이디어 자체가 학생들에게 낯설게 다가왔다는 이야기로 해석할 수 있습니다.
앞에서 제시한 문제는 2024학년도 수능특강 예제에 등장한 위 문제를 연계해서 출제한 것이다.
그러나 해당 문제에서 활용된 아이디어는 이미 2024학년도 수능특강 예제 문제에서 등장한 적 있던 아이디어로, ’아이디어 활용‘이라는 수학 영역의 연계 양상이 정확하게 반영되어 있는 문제였습니다.
위 예제를 활용해 해당 아이디어에 대한 행동 영역 - ’수열의 합이 등장하면 (n-1)을 대입하고 빼 일반항을 구하기, 부분분수 형태가 등장하면 식을 그에 맞춰서 변형하기‘ 를 올바르게 수립해 두었다면, 오답률 60%를 기록한 나름 고난도 문제를 어려움 없이 바로 풀어낼 수 있었던 것입니다.
이렇듯이 수학 과목에 있어서 EBS 연계 교재에 등장한 아이디어들과 그에 대한 행동 영역을 제대로 정리해 둔다면, 실제 시험지를 마주함에 있어 도움을 받을 수 있는 부분이 분명히 존재합니다.
특히나 흔히 말하는 ’신유형‘ 문항이 연계교재에 등장했을 때는 그 문항이 연계되어 등장했을 때 파괴력이 상당할 것이므로, 이러한 경우에는 연계 공부를 해 두는 데 더 크게 힘써둘 필요가 있습니다.
그리고 이러한 방식으로 연계 학습을 해 두었을 때 여러분이 얻을 수 있는 효용은 다른 과목과 비교해 봐도 더하면 더했지 결코 밀리지 않는 수준입니다.
물론 지문 자체가 그대로 출제되기 십상인 국어 문학에 비해서는 그 효용이 밀릴 수밖에 없지만, 소재 연계에서 끝나는 국어 독서나 화법과 작문, 매체에 비해서는 확실히 높은 효용을 가지고 있고, 언어와 비교해도 결코 밀리지 않는 수준이라고 단언할 수 있습니다.
그렇기에 기출 학습도 겨우 끝낼 수 있을 정도로 시간이 촉박한 것이 아니라면, 수학 영역에 있어서는 가능한 한 시간을 내서 연계교재를 구매하고 위에서 제시한 방법을 따라 유의미한 연계 교재 학습을 진행하시는 것을 강력하게 추천드립니다.
팔로우와 좋아요, 댓글은 칼럼러에게 큰 힘이 됩니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
요즘은 특히 진짜
-
이러면 또 학력저하라고 틀딱들이 비웃겠지
-
05년생 여자이고 현역 때 정시로 연고대 이상 생각했지만 수능 때 국어에서 크게...
-
와 현우진t vs 윤도영t 인스타 댓글서 시비붙음 ㅋㅋ 7
이정도면 붙나요?
-
수능을 계속 보기로 마음먹음
-
군대는 빨리오자 22
가 아니라 어느 나이든 여기서 1년 반을 지낸다는 게 인생 손해다
-
올수 1임. 유학 갔다온 적 있어서 리스닝은 쫌 칠 거 같은데 읽기도 할 만한가요?
-
아오 17
아오 이따구로 그릴 거면 걍 격주 방영해라 본편 실제로 보면 더 가관임 무슨 AI...
-
진짜 올해 깡표대학밖에 쓸 곳이 없는데 투과목 만표 나락가면 저 ㅈ됩니다 ㅠ...
-
"수능에서 1등급을 받으면 됩니다."
-
어디 추천하시나여?
-
국어인데 6월 92 백분위 99 9월 97 백분위 93 수능 98 백분위 98이거나...
-
동덕여대 ㄹㅈㄷ 2
(동덕여대 교수가 학생들에게 보냈던 메일)
-
지금 10만원 할인하던데 나중에 더 떨어지나?
-
수리논술 처음인데 총평을 모르겠어요 일단 다풀긴 했는데
-
어케 불리나요??
-
22: 342 23: 123 24: 221 25: 142 진동폭 뭐임
-
뱃고동 소리가 진짜 긴장 맥스됌 올해 다른거여서 다행이였음
-
그래야만 함
-
개인적으로 43이나 44 말고 41이나 42가 1컷이면 좋겠네요... ㅠㅠ 면접을...
-
그게 배꼽일 줄은 몰랏네
-
다행히 된장냄새는 안 남
-
개웃기네 씹 ㅋㅋㅋㅋㅋㅋㅋ 근데 유리멘탈 기존쎄 밈에서 기존쎄 상이긴 함
-
브릿지 2
브릿지나 서킷 2024랑 2025버전 중복인가요? 아니면 완전 개정인가요? 서바도...
-
웅웅
-
미적 2829틀 공통 14 20 21 22틀
-
만약 작년과 올해 입시요강 변동이 없는 상황에서 작년 수능 때 받았던 표준점수를...
-
아직 봇치 더 락 2기가 나오지 않았다는 사실을 떠올리세요..
-
15분 정도 받음
-
이젠 오르비를 자기전에만 해야지
-
ㄹㅈㄷ.. 오르비 폼 회복 중 그 와중에 시험 얼마 안 남았다 으으!!
-
저 어떡해요 7
현역이고 공부 늦게 시작해서 아직 수2 개념하고잇는데 어캄요ㅜㅜㅜ 확통은 시작도안함...
-
빨리 좀 발표했으면 과외도 구하고, 자취방에 물건도 사넣고 싶은데
-
언매 전형태 고전시가 강기본 하고 문학 독서 고민 중… 고2거는 고정1나오고 고3국어 모고는 안해봄
-
진심 내가 이렇게 빡통일줄 알았으면 자퇴 안 햇음... 난 적어도 내가 평균 이상일...
-
11수 한 사람도 존재하는데
-
가산점 3%받고 이런 대학은 어캐 취급되는거임?
-
집가서 맥주마셔야지 17
오늘너무힘들었어요 집가서 맥주마시고쉴거에요 근데집도착할려면 한참남았어요
-
짜장면 맛있다 3
근데 확실히 짜장면은 첫 젓가락이 압도적으로 맛있고 그 이후부턴 급속도로 물리기...
-
아직 때가 아닌가
-
고시? 로스쿨? 그딴게 되겟냐ㅠㅋㅋㅋㅋㅋ
-
6모 96 9모 100 올수 96(22틀 ㅅㅂ)인데 걍 n제풀면서 감유지만 해도 될까요
-
그게 나야 바 둠바 두비두밥~ ^^
-
성공한 사람들 공부법이 수십수백개는 되는거같음... 대충 맞는 방향이면 뭐든 되는 것이 아닐까
-
오늘 중앙대 논술 보고왔는데 세종대도 가는게 좋을까요?
-
모공 논술 쳤는데 수학을 거의 못품 ㅋㅋ 정시로 갈 수 있을라나...
-
사이비인줄알고 끝까지 의심했는데 아니었네 착한사람
-
수학공부 8
수학공부를 하는데 진짜로 현우진쌤이 말한거처럼 로그함수다하고 삼각함수다하고 수열쪽...
-
언매하는 거 이득이 있을까요? 언매 내신떄 했어서 유베긴 한데 독서 문학 공부를...
다른 과목도 기대하겠습니다
감사합니다! 사문 드가자.