[칼럼] 수학과 영어의 의외의 상관관계
영어에 발목 잡히는 의외의 이유
간단한 수학 문제를 내보겠습니다.
100의 절반은 몇인가요?
50의 절반은 몇인가요?
25의 절반은 몇인가요?
정답은 차례로 50, 25, 12.5입니다.
잘 따라오고 계시죠?
이제 마지막 문제입니다.
이 숫자들을 전부 더하면 몇일까요?
.
.
.
네, 87.5입니다. 어렵지 않은 계산이죠. 놀랍게도 상위권이 상위권인 이유는 50 + 25 + 12.5 = 87.5 임을 믿고 학습에 적용하기 때문입니다. 그런데 중·하위권 학생들은 이 수학적 사실을 자신의 학습에 적용하지 못합니다. 그래서 완전히 다른 길을 걷게 되죠.
50 + 25 + 12.5 = 87.5
사실, 이 수식은 제가 강조하는 공부의 대전제를 수학적으로 표현한 것뿐입니다.
공부의 대전제:
1. 아는 것과 모르는 것을 구분하고,
2. 모르는 것에 집중한다.
3. (1)~(2)를 반복한다.
상위권이 상위권인 이유는 명확합니다.
상위권은 100개를 배운 후 절반을 까먹어도 좌절하지 않습니다. 내가 까먹은 50개를 파악해서, 그 50개에 집중하죠. 50개를 집중해서 학습한 후 절반을 까먹어도 좌절하지 않습니다. 짜증이 날 순 있어도 좌절하지 않고 내가 까먹은 25개를 파악한 후 그 25개에 집중하죠. 그 이후에도 마찬가지입니다.
50 + 25 + 12.5 = 87.5
이제 이해가 가시나요? 매번 절반을 까먹는다 가정해도 공부의 대전제를 3번만 적용하면 90%에 가까운 완성도에 도달할 수 있습니다.
중·하위권을 벗어나기 어려운 이유
성장하지 못하는 학생들의 특징은 더더욱 명확합니다.
100개를 배운 후 절반을 까먹으면 거기서 스트레스를 받고 멈춰 버립니다. 스스로 멈춰 버리는데 지속해서 성장을 하면 그게 더 이상하지 않을까요?
구문 강의를 다 들었는데
아직 해석이 잘 되는 느낌이 안 들어요.
그냥 느낌대로 생각하고, 이 느낌 때문에 좌절하게 됩니다.
진지하게 묻고 싶습니다. 구문 강의를 완강하면 도대체 왜 해석이 잘 되어야만 하나요? 만약 완강만으로 그렇게 된다면, 영어 문장 해석 때문에 고통받는 학생들이 과연 존재할까요?
구문 강의 완강은 구문 학습의 완료를 의미하지 않습니다. 오히려 시작을 의미하죠. 즉, 대부분의 중·하위권들이 시작하자마자 좌절하는 학생들인 셈입니다. 단호하게 말할 수 있습니다. 이런 학생들은 절대로, 절대로 상위권이 될 수 없습니다.
여러분이 고통받지 않았으면 좋겠습니다. 고통받지 않아도 되는 상황에서는요. 그리고 여러분이 좌절하지 않았으면 좋겠습니다. 좌절하지 않아도 되는 상황에서는 더더욱이요.
50 + 25 + 12.5 = 87.5
오늘 책상 앞에 앉으면 포스트잇을 꺼내 보세요. 그리고 이 수식을 적은 후 책상 위에 붙이세요. 분명, 도움이 될 겁니다.
똑같은 컨텐츠, 다른 성적.
상위권들은 스스로가 잘나서 성장하게 되는 것일까요? 머리가 아주 똑똑한 학생들도 더러 있지만, 온전히 ‘독학’으로만 상위권, 최상위권이 되는 경우는 극히 드뭅니다. 상위권들은 스스로 잘 학습하는 학생이기보다는, 스스로를 잘 알기에 남들에게 도움을 잘 받는 학생에 가깝습니다.
이 말을 중·하위권들의 입장에서 써보면 무시무시한 표현이 됩니다.
누구보다 도움이 필요하지만
제대로 도움을 받을 수 없는 상태의 학생들.
여러분이 학습하며 만나는 강의/교재/칼럼 모두 여러분에게 도움이 되는 컨텐츠들입니다. 그런데 정작 여러분이 제대로 도움을 받을 수 없는 상태라면, 이러한 컨텐츠들이 여러분들에게 무슨 소용이 있을까요?
같은 컨텐츠로 공부해도 다른 성적을 받는 이유가 바로 여기에 있습니다. 여러분 자신을 잘 알아야 합니다. 즉, 아는 것과 모르는 것을 구분할 수 있어야 합니다.
많은 학생들이 너무나도 당연한 이 한 가지를 사실을 놓치고 있기에 도움을 받을 수많은 기회를 놓칩니다. 도움이 필요한 순간에 적절한 도움을 받지 못하면 답답함을 느끼다 포기해 버릴 확률이 높습니다.
이 칼럼을 끝까지 읽은 여러분들은 부디 그러지 않았으면 하는 마음입니다. 그래서 다시 한번 권해드립니다.
50 + 25 + 12.5 = 87.5
포스트잇을 꺼내 보세요. 그리고 이 수식을 적은 후 책상 위에 붙여 보세요.
남은 기간 분명, 도움이 될 겁니다.
이번 한 주도 수고 많으셨어요 :)
0 XDK (+1,000)
-
1,000
-
마더텅 자이같이 종이 질 이상한거 말고 풀이 공간 넉넉한거 ㅣ요!!
-
리게티 한때 사랑하고 맨날 챙겨보고 같이 평생 갈것처럼하다가 5달라에서 익절하고...
-
한국어 학습 가능?
-
딱 10만 됐을 때 캡쳐하고 싶은데 자고 일어나면 10만 넘었을것같아서 슬프네
-
뻘글 아님) 5
고양이 2마리 vs 강아지 1마리맞짱 뜨면 누가 이기나요
-
풀이가 이해 못할거같아서 암기해야할거 같은데 어떡하죠
-
여장사진으로 오픈챗에서남자많이낚아봄
-
쌍사 하자 0
암기로 승부 1등급 쟁취!
-
난 일말의 희망도 없다고..
-
냥 2
냐앙
-
밀리의 서재에 1
월붕님의 나의 삼수일기가 있네요 한번 보고 싶었는데 운이 좋구만
-
근데 아직 0
학교별로 26정시모집요강 안나오지않았나? 과탐 가산점이 3퍼인지 5퍼인지 어케알아여...
-
이럴땐 어떻게 해야할까요.. 애초에 한 활동이 독서 두개 엮기랑 토론한거라 다...
-
올해 4윌달에 150만원 씨드가 이렇게 되었습니다 토스 주식고수 뱃지도 받음ㅋㅌㅌㅌ 상위오퍼
-
아예 내 머가리 데이터만 로봇몸뚱이에 넣어서 살아보고 싶음 난 더 이상 신체적 한계가 없어지는 것임
-
에스파 윈터는 딴사람한테 가려져서 잘 못봄ㅠ 닝닝이 제일 실물파고 지젤은 회면이랑...
-
속보 윤석열.. 5
투표 ㄱ
-
텔그 39퍼면 1
스나로 질러볼순 있을까요 정시상담 받기전에 어느정도는ㄴ 생각해놔야해서
-
아,, 우울 8
-
진짜 연애하고싶다
-
너무 진부한가용… 루이스구조+vsepr 이론 해서 구조 이해하고 물리적 성질과...
-
처음 생1 할 때는 지금처럼 어렵지 않아서 대충 해도 1이었음 그러고서 과외 계속...
-
막상 조정 오면 스캠같아서 못 사겠어요ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 상승장에는 코인이 좋아...
-
오만할 수도 있지만 현역따리라도 한번에 가보도록 하겠슴다
-
친자컴퓨터를 절대 이길 수 없음 그냥 ㅇㅇ
-
휴릅 6
3월 더프 치고 올게요~~!! 잘 있어요! +) 옯스타는 출몰 예정
-
수학공부할때도 n제 문풀아니면 하기가 싫고 오답도 해강은 정말 보기싫고 해설지만...
-
오르비언들 물 드세요 13
-
영어 내신 2
유학파라서 수능&모고 기출 풀 때 빈칸 순서 다 맞거나 한 개 틀리고 가끔식...
-
오르비 가입하고 손 미끄러져서 눌러진 곳이 하필 복권이었음 이젠 오기만 남음
-
그냥 해설보면서 논리 배우고
-
국어는 모고보면 2등급 초에서 3등급까지 왔다갔다하는데 문학이 진짜 약해서 시는...
-
읹,ㅇㅉ짜증 1
왜 인증 나만 못 봐 맨날 왜 다 나 빼고해 화날려해 나
-
하... 님들 고백함 11
저는 사실 '테슬라 숏'에 넣었습니다 월요일 6시 안에 ㅈㄴ 쏠 거 같은데 불안해요
-
폰 안보면서 화면켜진걸로 시간 뻥튀기된거 아님
-
피자 먹을까 0
피자는 만들어먹기도 애매함
-
이왜기 5
아니이게왜기만이냐고이놈들아
-
성대 자과계 0
성대식 652중반인데 자과계 가능한가요? 추합권이라고 생각하고있긴한데
-
이쯤에서 학력 15
집안에서 제일 좋은 학력이 다들 어떻게 되시나요? 궁금해서
-
인원 더 들어온다고 해도 안정 맞죠..? 어제 변표 나오고 훅 밀리는 중이라 ..
-
좀 구리다고 생각함;
-
사탐으러 대학가기
-
1. 라미네이트 없다는데 이거 인강볼때도 많이 불편한가요? 2. 라미네이트 없는게...
-
정말 아무 것도 아닌 날입니다.수능 끝난지도 한참,성적표 나온지도 한참,수시...
-
저능해서 울엇어 5
큿소오옷 자러가야지
-
나중에그리워할거면 아니왜헤어졌음뇨 나만이해안되뇨잇
-
셋 다 붙으면 어디가 나음? 동생 반수 예정이긴함..
강의 들으면 거의 30~40%는 날아가서 지능차이가 이런걸까 싶었는데 이 글 보니까 너무 자연스러운 현상이었단 걸 알았어요 감사합니다 이렇게 논리적으로 설득해서 동기부여를 주는 글을 첨이네요
이성적 사고훈련!을 큰 줄기로 해서 멘탈에 도움이 되는 여러 칼럼들을 집필하고 있습니다.
도움이 되었다니 기쁘네요ㅎㅎ 응원하겠습니다! 앞으로도 잘 부탁드려요.
ㅎㅎ 따뜻한 세상을 위해 저만의 방식으로 싱글벙글 한 걸음씩 더 나아가 볼게요
좋슴니다! 다음주 칼럼 제목은
빠나나챠챠샘의 한마디로 부탁드립니다
Sum(½)^x 를 계산해보니
최초로 98%이상이 되려면
6번 반복하면 되네요
6번만 보면 98%이상의 내용을 알게 된다니 이거완전
럭키☆비키잖아 ?
뭘 알고 모르는지, 거시적인 이해는 명확한지 (100%의 규정) 따져봐야 알 일이라
아득하니 어렵네요 언제나 열심히 해야겠지
당당하게 89.5잖아? 라고 생각하며 들어갔는데 87.5였다니.. ㅜㅜ