재밌는 문제 풀어보셈요(10.16)(1500덕)
간단한? 정수 문제입니다.
난이도 : 2.5/5
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대단하네
-
자 진짜 준비해야겠제? 국어<<<<<<<<<<<<<누가 이기나한번 보자
-
이 완벽한 EI 반반은 뭘까요 E랑있으면 I고 I랑있으면 E니 정확한건가
-
그건 사실임뇨..
-
헉
-
안녕하세요! 의대 도전하는 학생입니다. 올해 수능에서 화작 미적 생1지1 으로...
-
볼 수 있겠지 두근두근
-
슬픈날이네요 17
-
내일은 좀 쉬어야지
-
사실 도움될 내용은 별로 없을듯
-
이거어캐처리함
-
치대한의대교과 나오기 전까진 진심 아무것도 못하겠다 5
아 진짜 미치겠다 부모님도 조마조마하고 난리남
-
아침 간계밥 점심 부대찌개 저녁 샐러드 달걀1개 미니고구마1개 단백질쉐이크...
-
가채점표랑 기억이랑 엇갈리는게 3갠데 맞길 기도중 하루하루가 개쫄림
-
제시문면접은 6
준비를 어떻게 해야하는거지 짜증나
-
이거 둘이 케미 좋나요?
-
성적표 마킹이 잘못된건 아닐지 표점이 떡락하거나 등급컷이 오르지는 않을지.....
-
역함수라고 뭉뚱그려 해석할수도 있지만 엄밀하게 생각해보면 그렇지 않았던 문제 무말인지 아시는분
-
의료계열(의사 간호사 약대) 지망생 진로 코치 강의 - 부탁으로 올림. 0
안녕하세요. 건강행복의료회입니다. 우리 의료회는 [지역 의료봉사/학술대회/의료계열...
-
ㅋㅋㅋ
-
여자친구 ㅇㅈ 7
-
취업 때문이라도 이과 가야하나?? 물1 중딩때 하긴 했는데 머리 쥐어뜯었던 경험이..
-
제가 본 데이터들을 바탕으로 보면 NT 성향이 있는 친구들은 대부분 국어를 공부를...
-
어렵게 내려고 하면 걍 한도 끝도 없음 답이 없더라
-
내가 할지 안할지 선택권이 있는지부터 물어봐야 되는거 아니냐?
-
하 뭐하냐
-
부모님이 굉장히 좋아하셨다. 목구멍이 뜨겁다. 혼자서 거의 250ml 정도 마셨는데...
-
현역때 공부 많이 안 해서 4년제 다 떨어지고 전문대와서 1학기다니고 휴학한 뒤...
-
당신의 선택은?
-
문과계열에 사탐 가산점도 같이 주는거죠? 사탐 가산은 없고 공대에 과탐 가산점만 있는 학교가 있나
-
물리내신범위 2~3단원,모고변형이고 프솔한바퀴 돌렸는데 기출픽같은거 풀면서...
-
그게 내가될줄 몰랐네
-
ㅇㅇ
-
고민상담 3
건국대 전전 2학년까지 마치고 군대가서 군수보고 전역한지 얼마 안 됐는데 이번에...
-
과탐보다도 어려웠던거임?
-
선착순 10명 6
뭐?!
-
집에 가면 따땃하게 뎁힌 침대위에서 이불 돌돌 말고 그 위를 굼벵이마냥 굴러주겠어 히힣
-
자기 전 질받 20
궁금하신 점 물어보셔용
-
전제 미적 확통 개념 싹 다 알고 3점짜리 다 맞힐 베이스는 있음 4점짜리도 사실...
-
최저 많이 맞췄으면 작년 대비 그렇게까지 안떨어질 것 같은데 어디서 형성될라나요...??
-
궁금함
-
백분위 기준 언매:93 미적:86 영어:3 한지:96 사문:91 과 상관 없이...
-
신검 얼마나걸림 5
내일 신검받는데. . .
-
재수 3
지금 수능도 못쳐서 기분 더럽게 ott나 보고있는데 올해 공부 했던거 까먹기 전에...
-
안녕하세요 최근에 군수 시작하게 된 상병짬찌입니다 2년만에 보는 수능이라 요새...
-
이것이 행복!!!
-
학교만 봄
-
키르아나 보고가십쇼 간만에 헌터헌터 정주행 마렵네
-
처음으로 시험에서 가계도를 풀어내는 쾌감이 너무 행복했음 그리고 그게 이번 수능이었음
-
요즘들어 자꾸 권위를 넘보려하네
가운데에 뭔기호에요?
a | b 에서 b가 a로 나누어 떨어진다는 의미입니다
이젠 님이 알려주시는군요..ㅋㅋ
이 문제 n<=2p 조건을 쓰면 간단한가요? ㅋㅋ 제 풀이는 이걸 안 썼는데 (어떻게 쓸지 모르겠어서..) 안 써서 그런가 좀 어려운 문제인 듯..
답은 (n,p) =(2,2), (3,3)이다.
i) 2|n
2|(p-1)^n+1 => p=2 =>n|2 => n=2.
ii) n은 홀수이고 p의 배수가 아님.
n의 최소 소인수를 q라고 하자. p-1이 q의 배수가 아님은 당연하다.
(p-1)^2n==1 (modq), (p-1)^(q-1)==1 (modq) (by 페르마 소 정리)
=> (p-1)^gcd(2n,q-1)==1 (modq) => (p-1)^2==1 (modq) (∵q는 홀수, (q-1,n)=1)
=> q|p(p-2)=>q|p-2 => p==2 (modq) (∵p와 q는 서로 다른 소수)
=> 0==(p-1)^n+1==1+1==2 (modq) => q=2 모순.
iii) n은 홀수이고 p|n.
v_p(n)=x라 하자.
Lifting the exponent lemma에 의해
x*(p-1)≤v_p((p-1)+1)+x => (p-2)x ≤ 1 => p≤3 => p=3 (∵x≥1)
=> n^2|2^n+1. 이는 imo 1990/P3이고, 답은 n=3 하나뿐이다.
따라서 구하는 모든 (n,p)는 (2,2), (3,3)이 전부이다.
오 맞아요 이제 봤네요.. 난도를 낮추기 위해 필요한 조건이랄까요 ㅋㅋ
쉽게푼 버전입니다
n^(p-1) | (p-1)^n + 1 이므로
n | n² | ... | n^(p-1) | (p-1)^n + 1
i) p가 n의 약수
p | (p-1)^n +1이므로 (-1)^n +1 = 0 (mod p)
1) n 짝수
2 = 0 (mod p)인 p = 2가 유일.
n^(p-1) | 2 이므로 n <= 2, 따라서 1 < n <= 2인 짝수 n은 2뿐.
2) n 홀수
n = pk <= 2p이므로 k = 1, n = p
따라서 준 식 p^(p-1) | (p-1)^p + 1
한편
(p-1)^p + 1
= pCp p^p - pC(p-1) p^(p-1) + pC(p-2) p^(p-2) - ... - pC2 p² + pC1 P - 1 + 1
= p² (pCp p^(p-2) - pC(p-1) p^(p-3) + ... - pC2 + 1) = f(p)
p | pCi 이므로 p² | f(p)이고 p³ !| f(p)
따라서 홀수 p는 3이 유일, 이때 n = 3
ii) p가 n의 약수 x
{n, n², ..., n^(p-1)} = {1, 2, ..., p-1} (mod p)
따라서 (p-1)! = (p-1)^n + 1 (mod p)
이때 (p-1)! = p-1 (mod p) 이므로
p-1 = (p-1)^n + 1 = (-1)^n + 1 (mod p)
p > 2인 소수 p에 대해 p-1 != (-1)^n이므로 불가
(2, 2), (3, 3)
맞습니다!
윗댓 사진 풀이 참고해보세요!
저런 문제는 어디서 가져오는 건가요?
작성하신 글 보니 저런 거 종종 올리시는 것 같은데..
경시 변형하거나 대부분 제가 만듭니다
그렇군요 감사합니다
약간의 오타가 있네요
마지막줄 p-1 != (-1)^n + 1 (mod p)
내친 김에 1990 imo P3 제 풀이도 올려봅니다.
n^2|2^n+1
n=1이면 조건을 만족한다.
n>1일 때, n의 최소 소인수를 p라고 하자.
2^(2n)==1 (modp), 2^(p-1)==1 (modp) (by 페르마 소 정리)
=> 2^(2n,p-1)==1 (modp) => 2^2==1 (modp) (∵(n,p-1)=1)
따라서 p=3이다.
Lifting the exponent lemma에 의해
2*v_3(n)=v_3(n^2)≤v_3(2^n+1)=v_3(2+1)+v_3(n) => v_3(n)≤1 => v_3(n)=1
n=3t라 하자. (t는 3의 배수가 아니다.)
t>1이면 t의 최소 소인수를 q라고 하면,
8^(2t)==1 (modq), 8^(q-1)==1 (modq) (by 페르마 소 정리)
=> 8^(2t,q-1)==1 (modq) => 8^2==1 (modq) (∵(t,p-1)=1)
=> q|63 => q=7 (∵q≠3)
2^n+1을 7로 나눈 나머지는 2,3,5만 가능하므로 모순, => t=1 => n=3
n=3일 때 확인해보면 해가 됨을 알 수 있다.
따라서 구하는 n은 1,3.
오 aops에서 봤던 풀이랑 비슷해요
근데 위에 풀이에서
q|p-2인 경우에 왜 쌍둥이 소수여야만 가능한가요?
q와 p가 모두 소수여서요 2차니 나는 소수쌍을 쌍둥이 소수라고 해요
그건 아는데 p-2가 꼭 소수이진 않잖아요, p-2가 합성수이고, q가 p-2의 약수일 수도 있는거 아닌가요
아 그렇네요. 아무생각없이 풀다보니까 그렇게 됬군요. 수정해서 올릴게요..ㅋㅋ
제가 그 부분에서 잠깐 막혔었는데 그냥 제 풀이처럼,
p==2 (modq) => 2==(p-1)^n+1==0 (modq) => q=2로 처리하는게 젤 간단한 듯요
맞아요. 제가 쓴 풀이 위에구해논 mod 식을 이용하는게 젤 간편하긴 해요
추가적으오 최대공약수 쪽으로 풀어서 접근해서 되는지 해보고 있었습니다