낫
Q. Can a boundary map on a long exact sequence of homology on manifold be interpreted as an actual topological boundary of a manifold representing the homology class?
A. True if the class is representable by a manifold with boundary. If $M$ is a compact $n$-manifold with boundary, it has a fundamental class $[M]\in H_n(M,\partial M)$ (coefficients being whatever as long as you're orientable w.r.t. them) and its image under the connecting homomorphism of the pair $(M,\partial M)$ is the fundamental class $[\partial M]\in H_{n-1}(\partial M)$ of the closed $(n-1)$-manifold $\partial M$ with the induced orientation. So, if $f\colon(M,\partial M)\rightarrow(X,A)$ is some map of pairs (the representing manifold of a class), naturality of the pair sequence yields $\partial(f_{\ast}[M,\partial M])=f_{\ast}[\partial M]$ and if $M$ is closed, this is zero, but that's not surprising cause the element then factors through $H_n(X)$ and the composite $H_n(X)\rightarrow H_n(X,A)\rightarrow H_{n-1}(A)$ is zero.
Intuitively, If $[\sigma]\in H_n(X,A)$, then $\sigma$ is some chain in $X$ with boundary inside of $A$. Since it represents a homology class, it should be a cycle, but it need not boundary anything entirely in $A$, so it could be a nonzero representative in $H_{n-1}(A)$. In other words, if $\sigma\mapsto X$ is a chain so that its topological boundary $\partial\sigma$ be mapped entirely into $A$. This boundary represents an element of $H_{n-1}(A)$. Although this is a more or less intuitive argument, this is exactly what's happening on topology. Algebraic machinery is just make this rigorous in algebraic language.
Q. How do you see the Alexander duality?
Rmk. Alexander duality: Let $X\subset S^n$ be a submanifold. Then $H_{p}(S^n\setminus X)\simeq H^{q}(X)$ where $p+q = n-1$. Or, $H_p(\Bbb R^n\setminus X)\simeq H^q(X)$ where $p+q = n-1$.
A. One of the most important interpretation of Alexander duality is via linking numbers of submanifolds, or more generally $k$ cycles. Consider $k$-cycle $z$ in the space $X$ of dimension $k$, and an $(n-k-1)$-cycle $w$ in the complement of $\Bbb R^n$. Then $w = \partial v$ in $\Bbb R^n$ for some cycle $v$. Now take the algebraic intersection (cup product) of $z$ and $v$. This defines a bilinear pairing $H_k(X)\otimes H_{n-k-1}(\Bbb R^n\setminus X)\to\Bbb Z$, called the linking number and gives an Alexander duality. Note that the linking number here is compatible with the linking number in the classical links in $S^3$. This is just a high dimensional analog. See this answer for more geometrical interpretation of high dimensional linking number https://mathoverflow.net/a/332250/323920
Under this interpretation, in case of knot $K$ not link in $S^3$, $S^3\setminus K$ can be thought as a "dual knot" which has linking number 1 with $K$. In particular, every knot complement has $\Bbb Z$ in the first homology, generated by a single "dual unknot" (meridian) of $K$.
One can actually define linking number from Alexander duality as follows: This time we let $M^p,N^q\subset\Bbb R^n$ be closed connected oriented manifolds with dimension $p$ and $q$ and $p+q = n-1$. Then by Alexander duality, we have $\Bbb Z\simeq H^p(M)\simeq H_{q}(\Bbb R^n\setminus Z)$. Now we consider the induced map $i_*:H_q(N)\to H_q(\Bbb R^n\setminus M)$ via inclusion $N\hookrightarrow \Bbb R^n\setminus M$. This map sends the fundamental class of $N$ to some integer times the fundamental class of $H_q(\Bbb R^n\setminus M)$, obtained by the isomorphism from Alexander duality. This integer is exactly the linking number of $M$ and $N$. You will see without much difficulty that these two back and forth are compatible.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 꿈같아요 ㅎㅎ..ㅎ.
-
자기희생 ㅋㅋㄴㅋ
-
전 보수지만 3
이건 탄핵 찬성이 맞다
-
좌우대통합 ㅋㅋㅋㅋ 근데 앞으로 어쩌냐
-
아ㅋㅋ
-
아 .. 이거 어떻게되려나요
-
지지합니다...
-
보수로 남았다간 돌 맞을듯
-
심각성을 모르는 다수도 존재하는것같다.
-
이재명이 될거같긴한뎅
-
우리학교 2찍남 소굴인데 낼 학교 반응 궁금하네 ㅋㅋㅋ 0
교사새끼들은 싹다 좌파라 개지랄하긴할듯 ㅋㅋㅋ
-
모집정지면 ㅈ되는데 ㄹㅇ 하………
-
Wow 입갤 ㅋㅋ
-
무조건 실리고 6 9 수능 중에 무조건 나온다
-
와우
-
“전 세계에서 가장 빨리 계엄령이 철회된 나라“ 가능함?
-
상상 국회 폐쇄 및 의원 체포 군인들 장악 & 금지령 곳곳에서 항쟁 일어남 현실...
-
뭐 큰 거 준비하나? 뭐지 왜 아무것도 발표를 안해 ㅈ됨을 감지한 건가
-
무섭다
-
ㅂㅂ
-
수능날급도파민나오는중
-
실화가 3시간 컷인데 분량이 되냐?
-
쿠키영상도 있다네요~
-
형이 군대에 있어서 쫄았음뇨
-
계엄령은 #~#
-
ㄹㅇ
-
신소재 전화기컴 고민중이었는데..
-
거부권 행사 불가인거 저도 아는데 이대로 끝나지는 않을거같음 뭔가 큰 일이...
-
어떻기 나오는 대통령마다 다 별로냐 ㄷ
-
낼 운동가도됌? 1
가도되려나
-
조선일보도 손절 2
-
하아... 진짜 나라가 이상해지고 있다
-
모집정지는 아니겠죠 제발 ㅠㅠㅠ 그냥 원래대로만 돌아가면 좋을텐데
-
입결 좃된것같아요
-
알바몬 보니까 시급도 높고 앉아서 아웃바운드로 전화만하면 기본급180만원 나온다는데...
-
쇼맨쉽 goat노 ㅋㅋㅋㅋㅋ
-
궁금
-
수1 마더텅 4
시발점하고 마더텅으로 바로 넘어갔는데 16, 18번 같은 4점 문제들이 계속...
-
기승전결이 깔끔해서 좋아요
-
역시우리장난꾸러기윤카
-
대통령기능뭐가잇나 하나씩다써보는것같음 핸드폰 처음산 어린애마냥
-
어카죠??
-
닉변합니다 1
고경제 저격수->고정외 저격수
-
[속보]"정부는 금융·외환시장 안정 위해 무제한 유동성 공급 등 모든 조치 총...
-
진짜 운도 타고나고 기본적인 정치는 끝내주게 잘하긴한다 바로 유튜브 라이브 키고 생방은 ㅋㅋㅋ
-
국민의힘 계보 쭉 따라서 올라가면 김영삼인데ㅋㅋㅋㅋ 윤두창 쫘파출신이라고 전땅끄만 있다고 착각했나
-
이재명 재판전 대선 ㄷㄷ
첫번째 댓글의 주인공이 되어보세요.