샌드위치 정리 감성 (ft. 극단적 사고하기, 열린 사고)
h(x)를 정리해 봅시다.
그래프 그려보시면 대충 사다리꼴 하나가 나옵니다.
a도 모르고 b도 모르고 k도 몰라서
어디서부터 뭘 할 수 있을까 처음에 막막합니다.
그런데 이 조건에 초점을 두어 봅니다.
우선 x가 0 이하일 때에는 당연합니다.
0은 0 이하이고 동시에 0은 0 이상이기 때문입니다.
그리고 구간 [0, 2]에서는 생각하기가 복잡합니다.
앞서 x가 0 이하일 때를 살펴본 것을
x가 충분히 작을 때를 살펴본 것이라 생각합시다.
그러면 우리는 대칭적으로 x가 충분히 클 때를 살펴보고 싶습니다.
그런데 x>2일 때 g(x)=0입니다.
그래서 x>2일 때 h(x)도 0을 함숫값으로 가집니다.
이때 h(x)=k(a+b-2)였기 때문에 a+b=2임을 확인할 수 있습니다.
그러면 다음과 같이 h(x)식을 다시 작성해줄 수 있는데
생각하기가 훨씬 편해집니다.
이제 함수 g(x)도 h(x)도 x=1에 대해 대칭이기 때문에
함수 g(x)-h(x)를 구간 [0, 1]에서만 살펴봐주어도 되겠습니다.
이제 구간 [0, 1]에서의 적분값이 최소가 되도록 해 봅시다!
만약 a가 모든 실수를 범위로 한다면
적분값이 a에 대한 이차함수이기 때문에 a=1 넣고 끝내면 되겠지만
a<b 조건에서 0<a<1임을 확인하실 수 있습니다.
따라서 그런 식으로 문제가 풀리지 않을 것이라는 것을 확인하시면 좋습니다.
아직 이 조건을 제대로 활용해주지 않았는데,
마찬가지로 구간 [0, 1]에서만 신경써주면 되겠습니다.
이때 구간 [0, a)나 [a, 1]이나 모두 최고차항의 계수가 음수인
이차함수의 그래프를 보고 있으므로 대칭축이 어디에 있든
x=0, x=a, 그리고 x=1에서의 함숫값이 음수가 아니기만 하면
위의 부등식이 성립할 것임을 확인할 수 있습니다.
이는 x=0과 x=a, 그리고 x=1을 기준으로 대칭축의 위치를 나누어 보시고
하나씩 판단해 보시면 금방 확인하실 수 있습니다.
0<a<1이므로 남는 조건은 다음의 부등식입니다.
이를 통해 주어진 적분값을 나타낼 수 있습니다.
그렇다면 주어진 적분값의 최솟값은 위 부등식 우변의
a에 대한 삼차함수일 것임을 확인할 수 있습니다.
우변의 삼차함수는 0<a<1일 때 a=2/3에서 극솟값을 가지므로
a, b, k의 값을 모두 결정할 수 있습니다.
다른 문제를 살펴봅시다!
앞서 a+b=2 조건을 발견한 것과 비슷하게 생각해 봅시다.
0<h<g 꼴에서 g=0이면 h=0임을 확인할 수 있었듯이
만약 2k-8=4k^2+14k라면 주어진
점 (k, f(k))와 점 (k+2, f(k+2)) 사이의 평균변화율도
2k-8일 것입니다.
위의 등식을 만족하는 k의 값은 -2와 -1입니다.
이후 계산하여 f(x)의 이차항, 일차항 계수를 확인해주었으면 됩니다.
p.s. 고정 관념을 버리는 것은 수능 수학 공부에 도움이 됩니다.
시도해 볼 수 있는 풀이가 n가지 있을 때 하나만 올바르다면
그 하나를 찾아내는 것이 실력이라고 생각합니다.
구간 [0, x]에서 어떤 함수를 적분한 x에 대한 함수가 주어졌다고
무조건 미분해 보는 것이 답이 아니고,
평균변화율 꼴로 식이 주어졌다고
무조건 기하적으로 해석해 보는 것이 답이 아닙니다.
위 문항 2025학년도 9월 21번도 점 (k, f(k))과 점 (k+2, f(k+2)) 사이의
평균변화율로 직관적으로 이해해보려 하는 동시에
k가 정수임을 신경쓰며 주어진 부등식을 다루어보려 했다면
현장에서 빠르게 정답을 내기 쉽지 않았을 것입니다.
2022학년도 9월 14번 변형 문항인데,
x<0에서의 g(x)를 점 (0, f(0))과 점 (x, f(x)) 사이의 평균변화율로
바라볼 필요 없이 그냥 식 정리해서 이차함수로 다루시면 됩니다.
비슷한 느낌의 기출 하나가 있었는데 못 찾겠어서 나중에 찾으면 댓글로 언급해두겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
뀨뀨 11
-
저도 맞팔구합니다 13
잡담 태그 잘 달아요
-
뻘글도 계속 올리고
-
역함수의 교점이 y=x위에 있는지 판별할 수 있다. 0
[1] 학원에서 역함수의 교점이 y=x위에만 있는 곳은 아니란걸 배우고 문제 풀때...
-
예비 고3 수능 미적 27 28 29 30 공통 20 21 22 틀입니다 김범준...
-
시대 최종 컷 수정 35
이게 최종적으로 시대팀이 추정하는 컷이라네요
-
그냥 이젠 될때까지한다마인드 근데부모님이절대반대하실것같긴함
-
벌어서 하시던 분이 계셨는데...
-
제발
-
가세연 통장 가압류함 ㅋㅋㅋㅋ
-
수학강사 강윤구입니다. 제가 어제 Qna 답변을 달면서 바로 잡아야 할 부분이...
-
지듣노 9
알아보면 씹덕
-
선물 수익 인증 3
괜히 대학나와
-
옯만추특 11
나는 안해주더라.. 아무리 그래도 거를건 거르나봄
-
공1미1 92랑 미2 92이랑 누가 더 잘 나옴?
-
이 시대 컷대로 하면 500.xx 될것같음 이거 인문학부 가능하려나? 진짜 ㅈㄴ 쫄리네
-
chess.com으로 하는 중인데 레이팅 300이 간당간당해요
-
입시 질문받아요 29
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
오늘 하루 요약 6
시계와 눈싸움
-
특히 수학 이번에 18^2=364 쓴것도 키포인트 잡고 킷타ww 하다가 혼자서...
-
고우시다
-
1등급 나오나요?
-
전 이나경아일릿민주
-
아 머리 아파 1
아아아아아아
-
고딩때는 남자 싫다고 남친 있는애한테 남자 왜만나냐하고 아이돌 덕질하라는 새끼...
-
궁금쓰..
-
연고대 가능? 3
갑자기 불안해져서 여쭙습니다... 이정도면 연고대 자연계열 어디까지 가능할까요...?
-
카리나가 모델임 TMI) 마지막사진은 열애설 이후 첫 일정이었음
-
댓글 ㄱㄱ
-
캬캬
-
ㅅㅂ 존나 긁히네
-
귀여운거로 프사하니까 오히려 역효과가 나는듯 적당한 거 찾으면 바꿔야지
-
얼마나 올지 가늠이 안가네..
-
중대붙으면 0
물투해야지 으하하
-
ㄹㅇ 갑자기 이렇게 질문받으니까 생각이 안남
-
솔직히 올해 디카프였나 생명쪽 실모 평은 굉장히 구리긴했음ㅋㅋ
-
하 모르겠다 0
컷이고 만표고 스트레스만 받네 과목선택을 뭣같이 해서..논술 붙었으면 좋겠다
-
걍 처잘까 1
흠
-
옯스타 맞팔해요 18
방굼 만들엇어요 본계든 부계든 다 오케이에요 칭구해요~
-
고2때부터 정시준비해서 강기분 새기분끝냈고 지금 검더텅하고 있는데 겨울방학 때 뭐해야될까요?
-
1. 절대 국장은 하지 않는다 2. 미국 S&P500에 전액 투자하고 인내심을...
-
실모20회분 35000원 무료로 올려주는 실모도 한 20개였나 정확하진않은데 10개이상됨
-
생윤은 무조건 챙길수밖에 없을거같고.. 사문은 도저히 못하겠어서 만약 삼반수...
-
오징어들은 어떻게 살라고 커뮤에서조차 열등감을 느껴야 하다니 ㅆㅂ 예쁘고 잘생긴...
-
폰겜 추천좀 5
힐링되는걸로...... 마크빼구요ㅋ
-
ㅋㅋㅅㅂ
-
2026 수능 0
뿌시고 올 team 04는 ㄱㅊ!