(뇌아픔 주의)역함수에 관한 고찰
출처 ) 2025 지인선 N제 7회차 22번
(가)조건을 봤을 때 어떤 식으로 해석을 해야 할까요?
아마 많은 학생들은 가 조건을 보고 아래와 같은 사고과정을 거쳤을것입니다
언뜻 보면 타당해 보입니다
하지만 역함수의 정의를 엄밀하게 생각해보면
우리는 g(x)가 '연속함수'라는것만 알지 다른 조건에 대해선 무지합니다
다시 말해 이 친구는 무한한 가능성을 가졌다는 겁니다
다항함수가 역함수를 가지려면 항상 증가/감소 해야 한다는 것은 자명합니다
그럼 증가했다가 감소했다가 증가하는 함수는 왜 안되는데요?
하나의 정의역에 대해 두개이상의 치역이 생기기 때문입니다
예를들어 f(1) = 1,2,3... 이런식으로 말이죠
하지만 그 치역중에 하나를 선택할수 있다면?
f(g(x))=x 지만 g(x)는 역함수가 아닌 함수가 탄생 한다는 것 입니다
예를들어 볼까요
이함수의 y=x 대칭 함수는
이렇게 생겼습니다
여기서 치역을 골라서 간다면?
이런 함수가 있을수 있겠죠
이렇게 된다면 이함수를 g(x)라 했을때
f(g(x)) = x 를 만족한다는 것입니다
즉 이 문제에서의 증가 감소조건은 사실 없는조건입니다
그러면 (가)조건을 어떻게 해석했어야 하나?
y=x의 한점에서 치역에 대응되는 f(x)의 x좌표가 g(x)+f(2) 인것입니다
이는 또다시 거리관점으로 해석가능한데
x=f(2) 축을 그리고
위에서와 같이 치역에 대응되는 x좌표까지의 거리가 g(x)라고 볼 수 있습니다
y=0 에서 대응되는 점이 두개니까 g(0)의 후보군은 두명이지만
g(x)가 연속이라는 조건을 준점을 통해
멀리있는 쪽이 g(0)으로 확정된다는 것을 알수있죠
재밌지 않나요
이글 이륙하면 해설까지 이어서 써볼게용
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대형 입시업체보다 개인이 가채점 정답률과 평균점수만으로 추정을 한다? 이거부터 좀...
-
제발 비문학 핵불으로 나오게 해주세요.
-
당일치기 가보고싶음
-
왜 나는 어제 같이 생생하지,,,
-
김기현 파데 킥오프 완강햇고 아이디어+뉴분감을 할까요 알텍+뉴분감을 할까요?
-
난 ㄹㅇ 한국여자가 개좋던데
-
커하 98 95 1 99 96 커로 84 91 3 77 66 백분위임뇨
-
찾아볼수록 기분이가 안 좋음뇨
-
고2고 내신 3.6인데 정시할까요…? 일단 학종으로 갈생각이고 과학중점고등학교입니다...
-
곰곰이 생각해보니 연상 안좋아하게된 기점이 내가 늙은이에 더 가까워진것같다
-
내 인생 끝나다 0
처녀귀신되다.
-
저도질문받아요 21
선넘질받도괜찮아요
-
선넘질은 안받고 학습이나 대학생활 정도만
-
서울대 될까요...?? 22
내신이 광역단위 자사고 5.7정도 돼서 cc가 뜨진 않을지 걱정되는데.. Cc가...
-
..실제로 봤는데 대치동에서 오르비하는 애들 중에 실제로 모 네임드 은테들도 몇명...
-
난 아직 젊은데 왜 저런 늙은이랑 사겨야지?
-
제대로 된 ㅇㅈ 한 번은 꼭 봐야게씀
-
2024 로스큘만 봐도 고려대가 젤 많음 근데 이건 그냥 어쩌다 그런거고 대충 한...
-
탈르비 안 해요. 한 열댓 명 되는데 한 명 밖에 못 지움..
-
언젠가는될꺼야
-
물리인강 추천해주세요 아님 사문으로 갈아탈까 하는데 어떤가요 1
저는 장풍t처럼 지루하지 않는 재밌는 선생님을 좋아합니다. 그래서 물리선생님을...
-
생명과학1 커리 0
현재 생1백호 커리 타고있습니다 올해까지 섬개완 (개념학습)끝내고 2월부터...
-
메가스터디에서 제공해주는 학습 전용 아이패드 괜찮나요? 0
이거 원래 아이패드 에어 6세대랑 가격이 비슷한데 뭐 성능이 안 좋다거나 그런건...
-
덕코주고가 8
RE : ZERO 부터시작하게 수금을.. , .... (아까는 딱 4명이길래 함 비워봄)
-
탈릅위험자 3
https://orbi.kr/profile/951138#profile-nav-menu...
-
사수 에바임? 조언좀 23
현역 - 노답 갈수있는대학없었음(올 6) 재수 - 자대유간호, 삼여대 삼반수 -...
-
그 이후는 몰루
-
갠톡으로 오고싶으면 오십쇼 간만에 다시 풀어두네
-
탈릅할 거라면 1
덕코는 우선 저에게로 주시면 됩니다
-
현역이고 윈터 기숙 대기 걸어놧는데 앞쪽이라 거의 될 것 같음 잇올이지만 첫빠따라...
-
띠이용,,
-
장난이 심했나.. 14
죄송합니다..
-
탈릅메타 4
덕코줍줍메타(동치)
-
탈릅할수가 없다 9
동뱃 더 찾아야지..
-
나는 커뮤 인터넷이 현실에 더 가까운거 같은데.. 달리 갈 곳도 없군아
-
공화국 행님 밖에 모른단 말야
-
근데여기나가면 너무외로워져서 차마못하겠더라고요...
-
김대중씨 이 당을 이끌어주십시오
-
우리 처음 만났던 어색했던 그 글들속에서로 말놓기가 어려워 망설였지만뻘글속에 묻혀...
-
올 수능 83 2등급인데, 기출보면 앵간한 단어는 다 해석되긴 하는데, 그래도...
-
잘자요 0
내일봐요
-
물론 나도
-
빠이 10
(민심테스트)
-
탈릅많이하는군 2
-
맞팔! 0
-
덕코를 뿌리도록 하겠습니당
-
나이스임뇨 아주 건강하게 빼고있어서 만족임뇨 패스트푸드 탄산 술 아예x 저녁 가볍게...
-
내년 수능보는 07입니다 과탐 물리 선택하려고 하는데 배기범T 필수본은 처음 하기에...
-
ㄹㅇ웃긴점 3
작년에도 올해도 내년에도 수험생임ㅋㅋ 시발
읽진 않았지만 개추는 드렷습니다~
고맙다 태식아..
낮시간대에 재업하시는 게 좋을듯?
난 저문제 해설이 필요해
저 문제 되게 뜬금없이 어려워서 당황했는데 재밌고..
g(x)가 연속이란게 왜 멀리 있는점으로의 확정 조건인지 좀만 자세히 설명 부탁드림다 ㅜㅜ
0일때는 후보군이 두명이지만
0보다 조금 큰 경우를 생각해보시면 됩니다