쉽고 재밋고 개 유명한 문제 (2)
파티에 사람들이 있다.
이 사람들중에 임의의 2명은 악수를 하거나 하지 않았다. (여러번도 알빠 없음)
이때 각 사람마다의 악수 횟수를 모두 더한 값은 짝수임을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
괜히 경제같은 이상한 과목같은거 하지마셈… 생윤이 정 하기 싫으면 정법까진 ㄱㅊ은듯
-
전화나 해야겠다 9
자다깼더니 잠이 안와
-
개깨끗하고 시설좋고 책상 크고 세면대 물 따끈하고 흡연하는 곳 바로 옆에있고 주변이...
-
123은누가봐도개소리고 4아니면5인데 4는계산있어보이니패스 5는상황1은누가봐도플러스...
-
수능날 아침부터 2
책상바꿔주세요 신분증잃어버린거같아요 화장실가도되나요 물먹고와도되나요...
-
4시쯤 누우면 되겠다.
-
님들이라면 어디 쓸거같음요?
-
적금통장만들고 0
돈좀 모아바야지 아니 통장에 돈이 있으면 무조건 다쓰는 스타일이였어 내가
-
저도 현역 때는 건동홍만 보내주면 난 입시판 뜨지 이랬고 외대 논술보고 하루에 한...
-
이정도했으면 좀 뒤져야하는거 아닝가 ㄹㅇ 바디은퇴까지 볼 생각임?
-
오야스미 0
네루!
-
동생놈 개한심함 8
고2 시험기간인데 수능끝난 나보다 게임많이함
-
궁극적으로 똥글로 도배가 되지 않을까
-
왜 난 이럴까? 물음표로 수놓인 밤하늘나를 내려다 보는 star괜히 오늘따라 더...
-
올해가 마지막이라든데 장사가됨. ?
-
절대 함격 불가죠?
-
배설은 나고 관객은 너 하나
-
‘ ‘와 어떻게 5수를 할 수가 있지..? 진짜 말도 안되게 힘들 것 같은데’ 이리...
-
잠이 안온다 1
잠이 안옴
-
어제까지 일본 갔다오고 또 2달만에 일본을 간다라...
-
끼잉끼잉 3
-
언제 없어졋노
-
덕코 기부 좀 2
따서 2배로 갚겠음 그 넓고도 깊은 은혜 절대 잊지 않겠음 전에 주신 분들도 내가...
-
앙논 끝나고부터 금연 2주정도댐 ㅅㅂ하
-
25년도라고 저렇게 깔맞춥했네 ㅅㅁ
-
교수님이가르치다가 자연상수언급하는데 학생들이그거안배웠다하니까 아니이걸몰라요?라고하며충격받았었음
-
시발점 개정 0
시발점 개정이랑 지금꺼 별로 차이가 없나요
-
재미읎다 1
에휴이
-
250은 그냥 깨지네 옷사고 뭐하고 하면 300은 깨지는거네 흐음 ㅜ
-
그래서 전 직접 만지고 있어요. 냄새도 좋아요.
-
수갤 시절 문학인데 진짜 잘 만든듯 그보다 중3때 광운대 봤는데 이쁘더라
-
하
-
06이며 이번 수능은 미적선택하여 68점 나왔고 우선 미적은 시발점부터 다시 할...
-
달러에서원화로환산할때 뒤에14만곱해주면돼서 계산편함
-
키갈 3
리는 아프리카 국가 르완다의 수도
-
과목 장점으로 말장난 없다는 걸 내세우는 건 궤변임 7
평가원이 마음만 먹으면 바로 양질 구분, 다중부정, 필연개연으로 선지 다 흔들어놓을...
-
설머 -> 기회와 운, 실력 삼박자가 다 맞아야 갈 수 있는 천재일우의 대학. 신 그 자체.
-
항상 재수 때부터 서성한 이상이 목표였기 때문에 올해는 꼭 가고 싶은데 하… 올해...
-
사교육 카르텔 처치 한번만 해주세요 국어만 1 뜨면 진짜 치대 될거같은데.. 이것만...
-
쌩삼하게되면 5
공스타해야겠다 천명팔로워가목표야아
-
[4점]
-
쌩4수를 해야 폭발적으로 올릴 수 있을 것 같고 근데 만약 4수 5수 모두 수능에서...
-
시골의 기준이 뭘까
-
왜 조용하지... 햇는데 2시구나
-
독서 인강 추천 2
문학은 강민철 할건데 독서도 강민철쌤 할까요? 대성, 메가패스 있습니당
-
추합은 될 수 있으려나요 허허이,,
-
시간이 흐를수록 자꾸 자책하게된다는거임 수학은 22 잘 풀어놓고 20 합성함수에...
-
“지속 가능한”
-
투과목은 왜 3
2컷 3컷이 10점차가 나는거냐
보여줄게 완전히 달라진 나
악수할때마다 총 카운트가 2씩 올라가니깐 무저건 짝수 아님뇨?
맞음뇨 ㅋㅋ
에잇 재미없엇네 ㅋㅋ
이런 ㅅㅂㅋㅋㅋ
파티에 있는 사람들의 수를 n이라고 하고, 각 사람을 p1, p2, ..., pn이라고 부르겠습니다. 각 사람 pi의 악수 횟수를 di라고 하겠습니다. 이때 우리가 증명해야 할 것은 d1 + d2 + ... + dn이 짝수라는 것입니다.
악수는 두 사람 사이에서 이루어지므로, 모든 악수는 두 사람의 악수 횟수에 각각 1씩 더해집니다. 즉, 악수가 한 번 일어날 때마다 악수 횟수의 총합은 2가 증가합니다.
예를 들어, p1과 p2가 악수를 했다면 d1과 d2가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다. p1과 p3가 악수를 했다면 d1과 d3가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다.
이런 식으로 모든 악수에 대해 악수 횟수의 총합은 2씩 증가하므로, 악수 횟수의 총합은 항상 짝수가 됩니다.
따라서 각 사람마다의 악수 횟수를 모두 더한 값은 짝수입니다.
좀 더 수학적으로 표현하면, 악수 횟수의 총합은 다음과 같이 나타낼 수 있습니다.
Σ di (i=1부터 n까지)
각 악수는 두 사람의 악수 횟수를 1씩 증가시키므로, 모든 악수에 대해 이 합은 2의 배수가 됩니다. 따라서 악수 횟수의 총합은 짝수입니다.
뭣
di라니 그래프이론을 아시는 분이신감 ㅎㅎ
53초전이면 합리적 의심으로 gpt
땡
그런거구나
사실 구글 ai인 Gemini한테 시켰어요 ㅋㅋ
ㄷㄷ
쌤쌤이로 할거임뇨
한 번의 악수는 악수 횟수의 총합에서 2명당 1번씩 카운트되어 2번으로 치환되기 때문에 악수가 몇 번 이루어지더라도 짝수일 수밖에 없음
확통교과서에 나오지않나
근가