미적분러라면 이 정도는
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
전문가가 진화하는 거임 수능이 진화하는 거임 수능 지구과학이 진화하는 거임? ......
-
23수능 때 미적 백분위 94였습니당 확통이 할 만한가요?그리고 확통으로 공대가 진짜로 되나요?
-
졷같아요… 오늘 7시간만 채워야겠누
-
현우진 시발점 거의 다 들었는데 고1 문풀 강좌가 없어서요 메가에서 고1 문풀 강좌...
-
이원화캠퍼스 10
입결 차이 거의 안 나는 학교: 성균관, 경희, 명지 입결 차이 나는 학교: 단국,...
-
댓글도 죄다 질문하는 댓글만 달고 사람을 보면 TMI가 막 궁금하고 글도 죄다...
-
보기의 나라가 요나라인 거는 ”상경 임황부“ 요거 보고 맞혔어야하는 건가요? 저는...
-
진짜 차단하러간다 이 시발놈
-
아래로만 들어와라 위는 안돼
-
40대인게 말이안되는데
-
아무래도 실수들이 많겠죠..? 근데 점공안하는 실수들은 진짜 뭔가요..ㅜ 점공좀해조
-
좋은 영화였어요
-
옯스타 3
요즘 우후죽순 생겨나서 누가 걸긴거는데 누군지 모르겟삼
-
흐흐
-
고3 3모.. 확통에서 서술형 2문제 빼고 다 맞아서 50점 4등급 떴어요..ㅎ...
-
존잘이라 맨날 여친이랑 놀러다니는거 인스타에 올리는 놈 있음
-
크르릉 0
크르르르르르르릉
-
1칸스나 1
1칸스나햇는데 기대하게하지마라 ㅈㅉ뼈묻고싶어지니까:::
-
서울 빼고 모든 지역 정당 지지율이 토씨하나 안틀리고 동일함 이게 말이 되냐 조작도...
-
수학도 그런게 좀 있지만 국어는 걍 말이안됨 지금까지 본 시험 현장체감 난이도...
-
1. 치킨 2. 족발 3. 초밥 4. 오돌뼈 5. 그밖 짜장면, 피자는 안땡김
-
월급날 지났는데 조용하다
-
실존하는건가요
-
그냥 지금 뛰어내릴까
-
소신발언하면) 2
백합은 진리임.
-
아하 1
왜 늦은 오후만 되면 기분이 ㅈ같고 우울해지나 했는데 항우울제 끊은지 3주 밖에...
-
대충 밥 먹고 청소하고 지금은 각자 휴대폰 보는중
-
트럼프 취임후, 중국개입이 공식화되면 한국국내이슈에 미국개입 명분이 된다는데? 헐~...
-
아주 바람직한 취향을 가진 사람이 많네요
-
머먹지
-
얼굴에 철판 깔던데 ㅡㅡ 세상에 참 다양한 사람이 많은 것 같아요...
-
대략 1600명중에 600명 점공했으면 대충 맞나요? 작년엔 최종 1100명정도 점공했던데
-
역시 우리 엄마야
-
제목이 곧 내용이에요
-
왜그랬지 진짜
-
질문받습니다 7
네~
-
26학년도에 정상화될듯
-
학교 내신 1이떳어요 와우!!!!! 물론 진짜 ㅈ반고지만….ㅎㅎ 한달동안.. 2주...
-
무엇이든물어보세요 62
저는 서울대에서 학부 경제학사와 이학사(통계학)를 취득했고 작년부터 대기업에서 일을...
-
예비고3입니다! (영어 모의고사 공부를 점점 안하면서 고1 모의고사 1등급, 고2...
-
정작 옯만추는 해본적없음 공과 사 구분 ㅁㅌㅊ
-
수능에 안나오지않나요
-
9모때 처음겪어서 그냥참고해서그런지몰라도 5개나갔었는데,
-
저녁밥상에서 5수 선언 33
깻잎+삼겹살+쌀밥+쌈장+구운마늘 엄마: 환갑 돼서 대학 갈 거냐 아빠: 수능을 또...
-
전 국어 포텐이 고2말에 터져서 교육청 국어1을 놓쳐본 적이 없음 전교 11등까지...
-
사용해보신 분들 ㅠㅠ
-
설령 진짜라고 해도 누군가에게 심각한 문제를 농담거리로 쓰는 게 좋게 보이진 않음
-
한의대 충원 0
올해는 추합이 더 잘 안돌까요? 아님 작년만큼??? 작년보다 더 잘??????...
-
1등급 인강민철 0
올해 1등급 나왔고 강민철T 안 들어봤는데 그냥 인강민철만 해도 돼요?
-
갑자기 유빈관련 물어볼게있다고 쪽지를 보내는데 난 그게 뭔지도 모르겠고… 검색해도...
항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀
수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)
우악 토나와
오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다
가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ