킬러 문제였구나 ㅁㅊ
준킬러도 아니고 이게 왜 3점이랑 쉬4 모아놓은 거에 나오냐
인터넷 치니까 킬러라는데 맞음??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한양대 진짜 6
사과해요 나한테!!!!
-
욕심을 그냥 좀 버려볼까 욕심이 과하니 정신이 산만해지네...
-
그래서 돈없다고 거절함 근데 슬프게도 핑계가 아닌 팩트임... 진짜돈이없어ㅅㅂ ㅠㅠ
-
그게나에요
-
그냥 뼛속까지 문과생.. 일단 ebsi로 싹다 밀엇는데 메가스터디나 대성 진짜...
-
그깟아무가치없는데이터를돈주고사는 아무의미없는행동하지마세요...
-
국어 3컷에 나형 100점 받고 사탐 1 1 받고 건대 떨어져봐야 정신을 차리지..
-
커뮤에 너무 절여져 버렸다 그래도 현실 말투는 이 정도까진 아닌데
-
ㅏㅏㅏㅏㅏㅏㅏㅏ 4
ㅇㅇㅇㅇㅇㅇㅇㅇ
-
손해볼 일은 진짜 거의 없음 자기 자신을 위해서라도 들이면 좋은 습관
-
이번에 헌법재판관 후보로 지명된 정계선 후보자는 특이한 커리어이긴 하네요. 1
서울대 의대 중퇴하고 학력고사 다시 쳐서 서울대 법대 입학...그리고 사법시험 수석...
-
성대야 사람하나살려다오
-
교육 짜는 사람들이 문괴출신이다 보니 수학 못하는 애들은 구제해줘야된다 뭐 이딴...
-
왜이러지
-
내신은 총합하면 2.6정도고 세특은 그럭저럭 채운거같습니다 만약 유지한상태로 수시...
-
약대는 공부량 어떤편인가요? 일반과랑 비슷한 수준인가요?
-
여르비 질문 받습니다 10
네
-
본과 때 방학이 진짜 방학인가요?? 아니면 가짜 방학이고 하루 종일 공부나 뭐...
-
문제를 너무 어렵게 낸다는거지 그 짧은 시간 안에 추론,퍼즐이 섞여있는 문제를...
-
제껀 찾기 쉽습니다 정직해요
-
잠 언제 잘까 8
-
인설의나 연치 목표이구요. 과탐 2개는 솔직히 할 자신이 없는데 그러면 목표를...
-
화학 47/ 90 겨울방학때 1,2단원 열심히 여름방학까지 한달에 한번 꼴로 간간히...
-
생윤이 사탐중에 제일 어려움 이것은 반박할수없음
-
그런 거 정리돼있는 곳 없나요
-
한명 차단했는데 계속 댓글 쓰는데 안보임
-
옯스타 3
. 일상 관련
-
흠. 5
흠.
-
기도하는 마음으로~
-
제발
-
근데 자교 아닌 다른 대학병원으로 빠지는 경우도 많다는데 왜 자교 티오 신경써서...
-
국어×(200÷139)×1.25+수학×(200÷140)×2+영어+(탐구2영역합)×1....
-
학교라인을 높이고 낮은학과에 가는게 좋을까요 아니면 학교라인을 낮추고 좀 높은...
-
물갈이가 될 시기긴 하죠 저도 3수 시작하면 안올듯
-
궁금
-
의치대 사탐 2
사탐 2개하면 의치대 불가능한가요?? 최대 목표는 인설의(연의포함)이나 연치에요....
-
진학사 칸수전망 2
님들 어케보심? 올해 의대이월이랑 스카이 이월 역대급으로 많다하고 의반수 빠지고...
-
추합전화를 실수로 거절하거나 통화 중에 실수로 끊어버리면 그대로 떨어지는 건가요,...
-
입영 연기 0
공익 입영일자연기원 <<< 이거 입학하고 그때 신청할 수 있는건가요? 아님 입학하면...
-
나도 쳐야하나 생각이 드는건 사실인데 이런마인드면 일년내내 선택과목만 고르다가...
-
같이 퓨로랜드 갈 사람 없냐?
-
우우 여붕이우울해졌어
-
- 2022 수능 물리학1 만점자 106명 중 한 명 - 2022 수능 수학 백분위...
-
옯스타 개설 마빨구함뇨 13
일상이나 공부한거 그런거 올릴듯여
-
야! 6
호~
-
오늘 경험해보겠어요 나라별로 생맥마셔보고싶군아
-
맞팔9 0
ㄱ
-
하아..
-
진짜 가톨릭보다 조금이라도 더 높은 대학이면 아무거나 갈텐데 다에 가톨릭보다 조금...
어려운거 맞아요
대체 이게 왜 여기서 나오는 걸까요...
지금은 넘어가도 괜찮을까요?
이거 상쇄 그건가
이거 어려운데
내다버린 1시간...
짱중요한?
오 아시네요
주변 애들 중에 아는 애들 없던데
이해하려 노력하고자 한다면 글로나마 최대한 상세하게 해설할 의향은 있음
최대한 이해하려 해보겠습니다...!
전 글이 이거 관련된 거였는데, 거기서는 답을 못 얻어서요 ㅠㅠ
다만, 수준이 이걸 이해할 수 있을지는 모르겠습니다
미적 아예 안 나갔고 수2 쎈 끝낸 후 처음하는 기출이라서요
현우진도 해설오류낸 문제
ㄱㄴㄷ 문제라 그런것도 있지만 객관식 정답률 10퍼대 문제임 객관식중에는 손에꼽는수준
231114 어려운거마즘
g(x)는 x의 범위에 따라 식이 변하고, 그렇기에 h(x)도 x의 범위에 따라 식이 변함. x=-3, -1, 1 부근에서 식이 변하니 ~-3, -3~-1, -1~1, 1~ 이렇게 4개 구간으로 쪼개서 생각하면 될 텐데, 문제는 경계를 어디에 포함시켜야 하는지가 판단이 어려움. 경계를 어디에 포함시킬지를 고민하고, ㄴ, ㄷ을 고민하는 과정에서 x에 극한을 적용해야 하는데, x도 극한이고 t도 극한이라 극한이 더블임. 어떻게 해야 할까?
(t->0+)lim g(x+t)에서, t에 극한이 적용될 때 x는 상수와 다를 바 없음. 그렇기에 x+t=m과 같이 치환해 (t->0+)lim g(x+t)=(m->x+)lim g(m)로 볼 수 있음. 같은 논리로 h(x)=(m->x+)lim g(m) × lim g(m+2)로 볼 수 있음.
이제 h(x)의 범위를 엄밀하게 나누어보자. g(x)가 x≠-1, 1에서 연속이기에, x≠-1, 1에서 (m->x)lim g(m)=g(x)임. 따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임. x=-3, -1, 1일 때는 그냥 대입해서 판정하면 되니까, h(x)를 정확하게 작성할 수 있고, 이걸 기반으로 ㄱㄴㄷ를 풀면 됨
축제 준비 때문에 어제 핸드폰 수거 전까지 시간이 없다 이제야 시간이 났습니다...!
따라서 -3, -1, 1일 때 h(x)=g(x)×g(x+2)임.
여기 파트가 이해가 안 되네요
-1과 1에서는 g(x)가 불연속일 수 있는데 왜 이렇게 되나요??
엄 제가 잘못 씀
x≠-3, -1, 1일 때인데 아예 반대로 써버림
저 문제가 23수능에서 제일 어려운 문제였다고 개인적으로 생각합니다.