회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
본인 0
작년 수능날 생일이었음… 수험장 나오고 친구한테 케이크 받은게 가장 행복한 기억임
-
2월 말에 재종 들어가기 전에 뭘 할지 고민인데요. 작년에 제대로 체화 못한...
-
올해 문과만점으로 냥의가시는 분이 문과 메디컬 최고 아웃풋아님?
-
너무 심한 소리만 빼고,,,
-
다른건 이해되는데 공산주의가 21%나 나온건 이해가 안되네 6
나도 사회주의 성향이 있는 건가
-
진학사 3칸이였고 점공률 46퍼입니다 발표날이 24일인데 발뻗잠 해도 될까요 ㅠㅜㅜ...
-
영향을 주는 비율이 더 높다고 생각하는 쪽에 투표 ㄱㄱ
-
어떻게 과 이름이 농 ㅋㅋㅋ
-
ㅋㅋㅋㅋ
-
정외 심리같은거 배워서 어디다써먹지 아 어렵다
-
근들갑 2
근들근들
-
24학년도 교육청 학평 킬러 중 제일 GOAT라고 생각하는 문제 13
24학년도 10월 학력평가 22번 구간별로 정의된 함수인데, 함수 의 부호에 따라...
-
보통 설경을 안쓰면 농경제를 쓰려나 정외를 쓰려나 16
아무래도 농 때문에 정외려나..?
-
사탐 언제 시작할거임
-
머리 6
가슴배
-
과외에 특강에…. 내 2배 이상을 쓰네… 근데 영어 모고 4?등급이면 인강...
-
작수 미적 백분위81이구요. 작년에 한걸 적어보자면, 현우진T 뉴런 다 듣긴했는데...
-
ㅇㅗ빠 7
차 있어?
-
자취방에서 뭐하는 거람..
-
비둘기게이가 ㄸ치다가 갑자기 알닮은 애가 ㄸ치는 거 알고 이불 뺐어가서 후다닥...
-
영어랑 안 맞나 1
가끔 Birthday 이런 단어를 보면, 뭔가 이상해
-
소액이라도 덕코 받으면 기분 좋잖아요? 모두가 막쓰면 순환하면서 기분도 좋으니 막씁시다!
-
사실 아까 옯스타 글 올릴 때 우정이 영어로 먼지 기억 안 나서 인터넷에 쳐봣어
-
팔취할거면 하셈여...가시는 길 고이 보내드리오리다
-
서로 아무 말도 안하다가 20분? 걷고 집 옴 왜 삐져있는거야 본인이 잘못해서 싸운건데 참어렵다
-
후배 잘못둬도 한참잘못뒀다
-
도전을 안 외쳣어 깜빡하고
-
원하시면 쪽지주세여 。◕‿◕。
-
왜 팔로우하시는거에요.. 잡담태그도 안다는 불량이용잔데
-
"해줘"
-
저도 옯스타 홍보할께요 10
Love, Peace and Friendship
-
내일 하겟습니다
-
그렇다네요
-
결국 그게 최고더라고요
-
파인애플펜슬이 될때까지 대기
-
살면서 가장 많은 사람들이 자신의 정치성향을 세게 드러내는 걸 보게 되는 시기같다. 0
아니면 나이가 들어 보이게 되는건가
-
입대일 4
따라라
-
삶은 계란 뭐랑 먹지 24
소금이 국룰이긴 한데 다른 조합 없을까
-
기하를 벅벅 17
얘도 안 하니까 감이 떨어지는구나...ㄷㄷ
-
오랜 생각이다
-
구라예요. 분석부탁드려요 찡긋
-
맞팔해주세염.. 4
네임드가 되기 위한 첫번째..맞팔해줘잉
-
다 오른쪽인데 진보하나만 높은 게 말이되나
-
라면을 하고 사이다를 넣으면면을 올릴 때 면에 기포가 묻어잇는데진짜 ㄱ ㅐ 빡침뇨
-
뭔가오랄잘할것같음 이빨도없자너
-
이거 불법으로 공약미는 정치인 나오면 내 인생을 걸고 빨아줄 자신있다 일본처럼 차고...
-
당장 전닉도 기억하시는분이 없을것같아서 포기함 혹시 계시려나
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다