아이디어성 경우의 수 문제 (10000덕)
모든 항이 {1,2,...,m}의 원소이고, 길이가 k인 모든 수열들의 집합을 생각하자. 각각의 수열에서 가장 작은 항을 뽑고, 그 값들을 더한 합을 구하여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 작년보다 어렵네요 - 국어 그 정부랑 기업 어쩌구 그지문 역대급이네요 - 독서...
-
스킬 1도 모르고 정석대로만 푼사람인데 (비율관계ㅜ이런것도 잘 몰랏엇음,,)...
-
피시방 처음가는데 메뉴추천 좀
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는예비 한국외대학생,...
-
피규어는? 레진
-
추론은 알아서들 하시고 칠지 말지 선택 해 주십쇼
-
양승진 vs 김기현 12
예비고2임다 쎈발점 끝냈는데 수1 양승진 기출코드? 실전코드? 김기현 아이디어 +...
-
그래서 베르세르크만 5번 회독함 ㅋㅋㅋ
-
난 씹덕 아닌듯 16
ㄹㅇ로
-
나도 드디어 어엿한 헬창 입문이다
-
왜클릭.
-
여자처럼 생겨서 그냥 별 감흥 없었는데 남자인 거 알고 반응옴
-
[미방분] ㅇㅈ 16
졸업식 헤헿
-
이거 잘맞는 듯 한가여
-
잔잔하군아
-
일단 전 안봐쓰요
-
아무래도 2월 7일일까요?
-
진보?보수??
-
시청 애니목록 4
원펀맨, 사이버펑크, 메이드래곤 이정도면 십덕 맞죠?
-
미국만 보더라도 200년동안 탄핵이 단 한건도 없었다는데 일단 이 내용은...
-
인생 꼬인다
-
보통 표준편차로 학교 수준 구분하잖아요? 근데 그 펴준편차가 중간고사 끝나고 나오는...
-
ㅁㅌㅊ? 걍 전기장판 살걸그랬나
-
ㅈㄱㄴ
-
요즘 웹툰은 자기 작품에 대한 애정이 없는거 같아요.. 2
이게 다 박태준 때문이야 죽어
-
애니 시청 목록 15
쓰면 가짜십덕 취급 받을까봐 안올릴게요..
-
해도 결과가 무슨뜻인지 잘 모름 ㅎ.ㅎ;;
-
마마마 유유유 프린세스프린서플 우마루 유능한 고양이는 오늘도 우울 블랜드s
-
선지 다 읽나요? 아니면 풀었다 싶으면 적당히 넘어가나요?
-
애니 시청목록 5
-
정치 성향 ㅇㅈ 0
뭐라고 해석하면 되나요
-
애니시청목록 10
메이드인어비스 암살교실 귀칼 일하는세포들 채애애아이 프리렌 선배는남자아이 전생슬
-
메디컬 대학교수를 목표로 하면은 박사를 따야한다고 들었는데, 박사과정은...
-
전 애니로 먼저본건 만화로 안봐서 2기 영원히 기다리는중임..
-
야식 ㅇㅈ 2
-
동생한테 먹여야지
-
한두 문제 차이로 치 한 갈 거 약수라인 가니깐 그 차이가 몇억을 내네요 원래...
-
메타는 다 지나갔지만 이전 글에서 오라는 현역은 안오고 n수 굇수님들만 꼬여서...
-
이런 거 걸러도 됨?
-
학원알바 끝 0
Cex
-
시청한 애니 5
최애의 아이 1화귀칼 간간히 진격의거인 다ㅣ나루토 다 암살교실 다 이제 기억 안 남 흐흐
-
그거는 구라 아니겠지 300개 훨씬 넘게 봤던데 7년동안 애니를 봤는데도 300개는 못봤네요
-
안녕하세여 14
-
유독 부엉이를 좋아하시는 원장님
-
흠... 이정도면 좌판가 우판가 몰루?
-
동네에셔 좀 유명한 학원(분당) 원장선생님반 듣는데 한번가면 4시간 정도 듣고...
-
대만, ‘음주 상습범’ 얼굴 사진 7배 확대해 만천하 공개 1
대만 수도인 타이베이시가 3회 이상 음주운전을 한 상습범의 얼굴을 7배로 확대한...
기하러라 포기
아 몰라 이런건 1,0,-1 중에 하나랬음
-1?
풀수있는거맞아요??
나름 우수한 통통이입니다
좀 어렵
통통이인 게 문제군요
아 길이가 k구나
엠마이너스1Ck 곱하기 1 + ... +
적기가 귀찮음
아닌거 가튼데
아 중복도 되네
논술하면서 봤던거같은데 귀찮;;
으아ㅏㅏ
∑(i=1 to m) i * (m-i+1)^(k-1)
맞는것 같기도 한데 식이 완전 깔끔하게 정리돼요
Σ (i * (m-1)^(k-1)) for i
?
흑흑
어렵네
깔끔하게 기준이 뭔가요
깔끔하게라고 하면 애매하긴 한데;; 식이 정말 누가봐도 깔끔하긴 해서..
답 적어주시면 최대한 확인해볼께요
흠..
m=3,k=2일 떄 답이 14가 나와야돼요. 써주신 답은 10이 나와서,,
아 처음 접근을 찐빠냈네요
i는 1부터 m까지, i^k의 합?
캬
아니 맨처음에 진행양상을 파악할때 수열 내에서 최솟값의 위치를 고려 안하고 시작했네요....
원래 풀이임미다.
모든 m^k개의 수열에서 일단 1씩 더해진다. 그 중 1이 없는 (m-1)^k개에서는 최소항이 2 이상이므로 1씩 추가로 더해진다. 또, 그 중 2도 없는 (m-2)^k개에서는 최소항이 3 이상이므로 1씩 다시 추가로 더해지고,... 반복
1부터 m까지 (해당 최솟값을 갖는 수열의 갯수)×(최솟값)에서 소거꼴 찾았는데 원본이 더 간결하네용