미적 이 정도면 난이도 어느정도임?
김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
축하한다 ㅋ <약간 틀딱같음 축하한다 ㅋㅋ<비아냥대는거같음 축하한다 ㅋㅋㅋ <<진짜축하임
-
한 6번인가 졋나바..
-
다 가네 진쨔 5
적절하지 않은 때에 들어온거 같네
-
연대빵이 더 맛있음
-
너무 속상해서 ㅇㅈ하기 20
펑
-
내가 조아하는 사진
-
맞팔구합니당 10
이미 맞팔되어 있는분들이 대부분이긴 하지만 ㅠ
-
나랑그사람들이랑딱히차이도안날거같은데너무부럽다
-
내가 조아하는 사진
-
맞팔9요 9
네
-
오르비하면서 틀어놨는데 현재 46분 10초 들음
-
갔나…? 5
이제 밤이 되었으니 애니프사단은 고개를 들어주시기 바랍니다
-
. 11
-
알파테크닉 0
알텍이랑 병행하면서 들을만한 기출 분석 인강좀
-
개오바 떨어서 오히려 신경쓰임 ㄹㅇ신경안쓰는데난
-
이대 vs 건대 0
이화여대 교육학과 건국대 시스템생명공 둘 다 붙으면 어딜 가는 게 맞나요? 이대를...
-
10년뒤에 나랑 결혼해줘 밥 잘 채려줄게
-
정시 수시 2
안녕하세요 예비고2입니다. 고1때 아무런 생각없이 놀기만해서 내신이...
-
왜?? 저렇게 빨간 색만 뜨고 휴지통이 어딧는데…??
-
다들 잘 자라. 3
또 새르비는 내가 지킬게
-
으흐흐
-
간만에 ㅇㅈ 3
에도 없다! 연세대학교 경영대학
-
왜케 잘불러..?
-
9시 과외 가기 전 6시에 일어나서 처리하기
-
자야지
-
무한 재업은 물평 ㅋㅋ
-
슬슬 자러감 10
금테하니도 갓생 살던데 나도 갓생 좀 살아야겠다
-
자작은 아니에용
-
7등급은 희귀하대요
-
찐따남..ㅇㅈ 16
펑
-
리트 관련 0
리트 관련 칼럼 적었습니다. 한 번씩 읽어주세요....
-
그냥 학교 안 가고 신입생 톡방에 솔직히 말해도 됨? 1
괜히 숨겨서 팀플에 민폐끼칠 바에는 입학식부터 학교 아에 안 갈 생각
-
쪽 7
,
-
그 사람 외모가 보이거든요
-
물리학과 평균 3
일주일에 한번 씼음 버튜버봄 애니 봄
-
잘자 옯붕이들아 나 오늘은 안들어올거다공부해야해
-
한의대 질문 0
한의대 졸업하고 제약회사 갈 수 있나요?
-
나인가 싶으면 맞음 이건 비호감들도 마찬가지일듯
-
맞팔 ㄱㄱ 11
낮에 공부 밤에 잠깐 오르비
-
5년만에 켜는듯
-
그냥 개 열받네
-
형이야
-
다들 잘지내 27
N수는 꼭 올해 성불하고 현역이나 그 이하는 열심히 공부하고오르비 너무 오래는 하지...
-
선착순 3명 천덕 13
-
치사함 ..
-
ㅇㅇ
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.