궁극의 가설
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잔다 8
다들 잘 자도록
-
재수생인데 이번에 재수하면서 과탐 개념을 다시 들으려고 합니다. 근데 저번에 쓴...
-
참나무를 말하는거죠 그리고 그안에는 참나물 너무도 잘어울려요
-
번개장터vs중고나라
-
ㅠㅠ 2
할머니가 공부 열심히 하고있냐고 물어보시는데 ㅋㅋ큐ㅠㅠㅠ 할머니 저 공부 진작에...
-
너는 졸업을 30살에 할거냐는 소리들음
-
머해 5
자니
-
금연 실패요 1
캬캬
-
튀긴 치킨 ㅇㅇ 후라이드는 넘 기름지고 양념은 넘 달고 간장은 넘 짜... 굽네가 최고~!
-
지금 화작 확통 생윤 사문 준비중인 고3입니다. 고3입니다. ///수학은 수1,...
-
ㄸㅇ처럼 유튜브로강의해서 돈벌고싶음
-
황올 핫 크리스피 << 걍 신임 바삭 짭잘 고소 매콤한데 질리지도 않고 내가 먹어본...
-
화작 원점수 88점으로 기억하는데 메가 예상 백분위가 89 95 100 91이었어서...
-
장물보,운항관제,항공운수,총무 중에서요!
-
인류애가 찬다
-
레어 사가삼 3
이쁜거 마늠
-
ㄱㄱ
-
요즘 2
댓글을 마니 못 달고 다님 내가 글 쓰다 보니까 댓글까지 달고 다닐 시간이가 없ㅂ음
-
그렇다는데 2
-
중솦 0
예비 270번언저리인데 여기까지 추합돌까요?
-
이것도 적응됐나 ㅅㅂ...
-
그냥 우울부엉이모드였는데 그래도 밝아보이셔서 다행이네요 우흥
-
목동 시대 특별전형 지원할건데 2월 중순쯤 하는게 나을까요 1
목동 시대 재종 특별전형 지원한다면 2월 중순 쯤에 하는게 장학 더 가능성 더...
-
옯만추 하자 10
ㅈ목 ㄱㄱ
-
그때로 다시 돌아가고싶9나............
-
나 분명 청순한 군필 여고생 여붕이인데.....ㅠ
-
시리즈물 느낌으로 개강 전까지 취미 삼아 업로드하고자 하는데, 게시할 때에 지켜야...
-
서울대 검고 9
서울대 정시에서 검고출신들은 생기부 대체서류 내야한다고 하네요. 그런데 장수생이라...
-
다행이야 빨간색느낌이 좀 사라졌어
-
오늘새벽은 이런 생각이 드네요
-
자주 등장하시나요
-
올만에 칵테일 9
아쿠아마린
-
대학들어가서 오르비 하고 수능특강 붙잡고 있지 마세요 자기 진로 학과 일 열심히...
-
생윤임 ㅇㅇ 근데 과탐분들이 하시기에는 좀 생소하실 수도… 그래도 개꿀과목이라고 생각
-
중2때였나 자야 해보고싶어서 RP주고 샀음....ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
사문 올해 컷 8
난이도 대비 좀 높은거같긴해
-
응애 나 힘들어 9
나 국어 해야해
-
정신차려라
-
인생노잼 1
할게없서
-
롤할까 배그할까 8
고민이양
-
여기 시설 괜찮나요? 에어컨 화장실 등등 시설 어떄요?
-
도시에서 났고 또 자랐습니다 이젠 질릴 법도 하여 새벽 일찍 남동으로...
-
1컷 45 2컷 43 3컷 41 이라매요
-
맞지?
-
과탐러들이 사문에서 전부 집결중인게 작년보다 훨씬눈에보임 이번에 과탐하고 쳐박고...
-
끄투코리아 냉이채널 10
누구나 알아볼법한 방 제목 비밀번호:orbi
-
음 그래그래 0
형은 아까 프장에서 애플이랑 아이온큐를 더구매햇어
-
직방 설명란에 있는데 방 쪼개는 경우 있다 그래서 거르는게 좋음?
ㅋㅋㅋㅋ
철학과ㄱㄱ
와...정말 놀라운 사고의 연쇄입니다
inf{1/10^n : n is in natural} = 0인데
이해가 안 감 저 부분
0.000...0001의 존재를 받아들여야 함
미안한데ㅜ수학적으로 0으로 다가가는 수열의 하한은 0임이 알려져 있음
반박할 거면 나 말고 대한수학회에 민원 넣으셈
최소양수라는 건 실수의 완비성 때문에 없음
0.000...0001 이라고 적어줘도 못받아들이는 이유가 뭐임
실수의 완비성 때문에 그것보다 작은 양수가 항상 존재함
무한의 개념은 단순히 점 몇 개 찍는다고 표현할 수 있는 게 아님
실수의 완비성은 공리라는데? 공리 부정해도 무모순인거 내가 예전ㅇ 말함
그런 게 있다면 엡실론-델타 논법도 틀림
코시 무덤가서 코시랑 얘기 좀 하고 오셈
엡실론 델타가 누군진 몰라도 내가 개박살 내주겠음
그니까 나 말고 대한수학회나 코시하고 상담하라고
진짜 수학과 발작 버튼은 여기 있었네
https://orbi.kr/00071290836
실수의 완비성은 공리라서 부정해도 무모순임
그러면 너가 말하는 최소 양수를 반으로 나눈 수는 뭐임
걔는 확실히 그 수보다 작고, 양수인데
이미 무한한 0이 있어서 뭘로 나누든 무한한 0이 있음
ㄴㄴ 너가 끝을 맺은 순간 그건 무한이 아닌 거임
무한은 수로 표현 불가능한 상태이지 수가 아님
미안하지만 무한의 정의부터 다시 공부하고 오렴
현실부정 단계인 거 보니 논리적으로 반박할 수단이 없구나
다른 거 가져와라 이제
그렇다고 그 부정이 공리가 될 순 없음
자명한 진술은 증명할 수 없다는 명제 때문에 공리의 부정이 무모순인 거지 공리가 틀렸다는 게 아니므로 너가 공리를 부정하더라도 원래 공리는 세계에 남아있음
공리를 부정해도 무모순이면 공리가 거짓 not 공리가 참임
0.000...0001 이 왜 수가아님? 실무한 하면되잖아 상태가 아니려면